Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat and electricity generator that reduces contaminant emissions

12.10.2005


The Ikerlan Centre for Technological Research is part of the team which is to work on, from this December onwards, the Flame Sofc Europeo project, the object of which is to design and develop a household electrical appliance based on a fuel cell that produces electricity and heat in a way that the dwelling can be self-sufficient and reduce the emission of contaminant elements.



The Flame Sofc project will last for four years and has an overall budget of 13,545,627 Euro. Ikerlan, a member of IK4, and Fagor Electrodomésticos (Household Electrical Goods), both belonging to the MCC group, are the Basque companies participating in the research, together with centres from countries such as Germany, Italy, Denmark, Holland, Switzerland, Greece, Portugal, the United Kingdom, Hungary and Poland.

The process of generating heat and electricity with this type of cell is more direct and, thus, efficiency is increased. Traditional methods have to burn a fossil fuel in order to produce heat which, in turn, is transformed into mechanical work by means of a thermal engine. This engine is what drives the electric generator that produces electricity. Fuel cells, on the other hand, produce electricity directly by means of an electrochemical process, using fuels such as natural gas or butane, without the need for combustion.


The basis for this system is that fuel cells, unlike traditional batteries, do not run out, the reason being that the latter have a combustible fuel inside so as to function and this, once used up, means the battery ceases to work. A fuel cell, however, receives its energy/fuel from outside and thus, has an indefinite period of operation while this fuel is being supplied.

Apart from greater efficiency, this system presents a significant advantage in that it causes considerably less aggression to the environment. The fuels used are transformed into heat and electricity through an electrochemical process, with water and Co2 as by-products and minimum emissions of nitrogen oxides and other contaminants. Moreover, as they are very efficient systems, they emit a reduced quantity of greenhouse-effect gases. Together with these benefits, household appliances based on fuel cells are quieter and longer-lasting.

Initially the practical application of this technology will be of a domestic, household nature given that what is sought is the creation of dwellings and building capable of generating heat and electricity together from natural gas, butane, propane or diesel fuel. Also, in the longer term, fuel cells together with electric motors could be the basis for traction systems aimed at cars and other transport sector vehicles.

The fuel cell will also have other applications – in the field of auxiliary production systems for electricity in buses, trucks and all kinds of vessels, when the main motor is stopped, and also to supply electricity to telecommunications repeaters.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>