Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA engineers pioneer affordable alternative energy-solar energy cells made of everyday plastic

10.10.2005


With oil and gas prices in the United States hovering at an all-time high, interest in renewable energy alternatives is again heating up. Researchers at the UCLA Henry Samueli School of Engineering and Applied Science hope to meet the growing demand with a new and more affordable way to harness the sun’s rays: using solar cell panels made out of everyday plastics.



In research published today in Nature Materials magazine, UCLA engineering professor Yang Yang, postdoctoral researcher Gang Li and graduate student Vishal Shrotriya showcase their work on an innovative new plastic (or polymer) solar cell they hope eventually can be produced at a mere 10 percent to 20 percent of the current cost of traditional cells, making the technology more widely available.

"Solar energy is a clean alternative energy source. It’s clear, given the current energy crisis, that we need to embrace new sources of renewable energy that are good for our planet. I believe very strongly in using technology to provide affordable options that all consumers can put into practice," Yang said.


The price for quality traditional solar modules typically is around three to four times more expensive than fossil fuel. While prices have dropped since the early 1980s, the solar module itself still represents nearly half of the total installed cost of a traditional solar energy system.

Currently, nearly 90 percent of solar cells in the world are made from a refined, highly purified form of silicon -- the same material used in manufacturing integrated circuits and computer chips. High demand from the computer industry has sharply reduced the availability of quality silicon, resulting in prohibitively high costs that rule out solar energy as an option for the average consumer.

Made of a single layer of plastic sandwiched between two conductive electrodes, UCLA’s solar cell is easy to mass-produce and costs much less to make -- roughly one-third of the cost of traditional silicon solar technology. The polymers used in its construction are commercially available in such large quantities that Yang hopes cost-conscious consumers worldwide will quickly adopt the technology.

Independent tests on the UCLA solar cell already have received high marks. The nation’s only authoritative certification organization for solar technology, the National Renewable Energy Laboratory (NREL), located in Golden, Colo., has helped the UCLA team ensure the accuracy of their efficiency numbers. The efficiency of the cell is the percentage of energy the solar cell gathers from the total amount of energy, or sunshine, that actually hits it.

According to Yang, the 4.4 percent efficiency achieved by UCLA is the highest number yet published for plastic solar cells.

"As in any research, achieving precise efficiency benchmarks is a critical step," Yang said. "Particularly in this kind of research, where reported efficiency numbers can vary so widely, we’re grateful to the NREL for assisting us in confirming the accuracy of our work."

Given the strides the team already has made with the technology, Yang calculates he will be able to double the efficiency percentage in a very short period of time. The target for polymer solar cell performance is ultimately about 15 percent to 20 percent efficiency, with a 15–20 year lifespan. Large-sized silicon modules with the same lifespan typically have a 14 percent to 18 percent efficiency rating.

The plastic solar cell is still a few years away from being available to consumers, but the UCLA team is working diligently to get it to market.

"We hope that ultimately solar energy can be extensively used in the commercial sector as well as the private sector. Imagine solar cells installed in cars to absorb solar energy to replace the traditional use of diesel and gas. People will vie to park their cars on the top level of parking garages so their cars can be charged under sunlight. Using the same principle, cell phones can also be charged by solar energy," Yang said. "There are such a wide variety of applications."

Melissa Abraham | EurekAlert!
Further information:
http://www.engineer.ucla.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>