Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA engineers pioneer affordable alternative energy-solar energy cells made of everyday plastic

10.10.2005


With oil and gas prices in the United States hovering at an all-time high, interest in renewable energy alternatives is again heating up. Researchers at the UCLA Henry Samueli School of Engineering and Applied Science hope to meet the growing demand with a new and more affordable way to harness the sun’s rays: using solar cell panels made out of everyday plastics.



In research published today in Nature Materials magazine, UCLA engineering professor Yang Yang, postdoctoral researcher Gang Li and graduate student Vishal Shrotriya showcase their work on an innovative new plastic (or polymer) solar cell they hope eventually can be produced at a mere 10 percent to 20 percent of the current cost of traditional cells, making the technology more widely available.

"Solar energy is a clean alternative energy source. It’s clear, given the current energy crisis, that we need to embrace new sources of renewable energy that are good for our planet. I believe very strongly in using technology to provide affordable options that all consumers can put into practice," Yang said.


The price for quality traditional solar modules typically is around three to four times more expensive than fossil fuel. While prices have dropped since the early 1980s, the solar module itself still represents nearly half of the total installed cost of a traditional solar energy system.

Currently, nearly 90 percent of solar cells in the world are made from a refined, highly purified form of silicon -- the same material used in manufacturing integrated circuits and computer chips. High demand from the computer industry has sharply reduced the availability of quality silicon, resulting in prohibitively high costs that rule out solar energy as an option for the average consumer.

Made of a single layer of plastic sandwiched between two conductive electrodes, UCLA’s solar cell is easy to mass-produce and costs much less to make -- roughly one-third of the cost of traditional silicon solar technology. The polymers used in its construction are commercially available in such large quantities that Yang hopes cost-conscious consumers worldwide will quickly adopt the technology.

Independent tests on the UCLA solar cell already have received high marks. The nation’s only authoritative certification organization for solar technology, the National Renewable Energy Laboratory (NREL), located in Golden, Colo., has helped the UCLA team ensure the accuracy of their efficiency numbers. The efficiency of the cell is the percentage of energy the solar cell gathers from the total amount of energy, or sunshine, that actually hits it.

According to Yang, the 4.4 percent efficiency achieved by UCLA is the highest number yet published for plastic solar cells.

"As in any research, achieving precise efficiency benchmarks is a critical step," Yang said. "Particularly in this kind of research, where reported efficiency numbers can vary so widely, we’re grateful to the NREL for assisting us in confirming the accuracy of our work."

Given the strides the team already has made with the technology, Yang calculates he will be able to double the efficiency percentage in a very short period of time. The target for polymer solar cell performance is ultimately about 15 percent to 20 percent efficiency, with a 15–20 year lifespan. Large-sized silicon modules with the same lifespan typically have a 14 percent to 18 percent efficiency rating.

The plastic solar cell is still a few years away from being available to consumers, but the UCLA team is working diligently to get it to market.

"We hope that ultimately solar energy can be extensively used in the commercial sector as well as the private sector. Imagine solar cells installed in cars to absorb solar energy to replace the traditional use of diesel and gas. People will vie to park their cars on the top level of parking garages so their cars can be charged under sunlight. Using the same principle, cell phones can also be charged by solar energy," Yang said. "There are such a wide variety of applications."

Melissa Abraham | EurekAlert!
Further information:
http://www.engineer.ucla.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>