Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA engineers pioneer affordable alternative energy-solar energy cells made of everyday plastic

10.10.2005


With oil and gas prices in the United States hovering at an all-time high, interest in renewable energy alternatives is again heating up. Researchers at the UCLA Henry Samueli School of Engineering and Applied Science hope to meet the growing demand with a new and more affordable way to harness the sun’s rays: using solar cell panels made out of everyday plastics.



In research published today in Nature Materials magazine, UCLA engineering professor Yang Yang, postdoctoral researcher Gang Li and graduate student Vishal Shrotriya showcase their work on an innovative new plastic (or polymer) solar cell they hope eventually can be produced at a mere 10 percent to 20 percent of the current cost of traditional cells, making the technology more widely available.

"Solar energy is a clean alternative energy source. It’s clear, given the current energy crisis, that we need to embrace new sources of renewable energy that are good for our planet. I believe very strongly in using technology to provide affordable options that all consumers can put into practice," Yang said.


The price for quality traditional solar modules typically is around three to four times more expensive than fossil fuel. While prices have dropped since the early 1980s, the solar module itself still represents nearly half of the total installed cost of a traditional solar energy system.

Currently, nearly 90 percent of solar cells in the world are made from a refined, highly purified form of silicon -- the same material used in manufacturing integrated circuits and computer chips. High demand from the computer industry has sharply reduced the availability of quality silicon, resulting in prohibitively high costs that rule out solar energy as an option for the average consumer.

Made of a single layer of plastic sandwiched between two conductive electrodes, UCLA’s solar cell is easy to mass-produce and costs much less to make -- roughly one-third of the cost of traditional silicon solar technology. The polymers used in its construction are commercially available in such large quantities that Yang hopes cost-conscious consumers worldwide will quickly adopt the technology.

Independent tests on the UCLA solar cell already have received high marks. The nation’s only authoritative certification organization for solar technology, the National Renewable Energy Laboratory (NREL), located in Golden, Colo., has helped the UCLA team ensure the accuracy of their efficiency numbers. The efficiency of the cell is the percentage of energy the solar cell gathers from the total amount of energy, or sunshine, that actually hits it.

According to Yang, the 4.4 percent efficiency achieved by UCLA is the highest number yet published for plastic solar cells.

"As in any research, achieving precise efficiency benchmarks is a critical step," Yang said. "Particularly in this kind of research, where reported efficiency numbers can vary so widely, we’re grateful to the NREL for assisting us in confirming the accuracy of our work."

Given the strides the team already has made with the technology, Yang calculates he will be able to double the efficiency percentage in a very short period of time. The target for polymer solar cell performance is ultimately about 15 percent to 20 percent efficiency, with a 15–20 year lifespan. Large-sized silicon modules with the same lifespan typically have a 14 percent to 18 percent efficiency rating.

The plastic solar cell is still a few years away from being available to consumers, but the UCLA team is working diligently to get it to market.

"We hope that ultimately solar energy can be extensively used in the commercial sector as well as the private sector. Imagine solar cells installed in cars to absorb solar energy to replace the traditional use of diesel and gas. People will vie to park their cars on the top level of parking garages so their cars can be charged under sunlight. Using the same principle, cell phones can also be charged by solar energy," Yang said. "There are such a wide variety of applications."

Melissa Abraham | EurekAlert!
Further information:
http://www.engineer.ucla.edu

More articles from Power and Electrical Engineering:

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

nachricht Air pollution casts shadow over solar energy production
27.06.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>