Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Groundwater sampling goes tubular


National laboratory practices "Leave No Trace" environmental sampling

"Leave No Trace" is a popular ethic for outdoor recreationists who advocate a natural landscape. Now it is also applicable to groundwater sampling collection sites along the Columbia River in southeastern Washington State.

Hydrologists from the Department of Energy’s Pacific Northwest National Laboratory are using a simple apparatus of ¼-inch-diameter plastic tubing to collect samples at varying levels in the aquifer along the river’s edge. Though a permanent installation, the low-cost, lightweight materials are easy to camouflage with indigenous rocks and vegetation so that the collection site appears undisturbed.

Hydrologists compare the aquifer tube method to sipping groundwater through a long straw. The tube system was developed to provide supplemental monitoring in locations where traditional monitoring wells cannot be installed because of access constraints. It has proven to be economical, visually unobtrusive and effective in providing an accurate picture of the vertical distribution of contaminants in groundwater at a specific location.

To install the tubes, a handheld air hammer is used to drive a temporary steel casing into the ground. Plastic tubing is lowered into the casing. Typically, three tubes are installed at each location, reaching depths of approximately 25, 15, and six feet. The bottom six inches of tubing is screened with stainless steel mesh and provides an opening for drawing water samples.

After the tubes are anchored in place, the casing is removed, leaving a short section of tubing extending out of the ground. Suction from a handheld peristaltic pump slowly withdraws water from the tubes. When the tubes are not in use, the top ends are capped and covered with PVC pipe to protect them from weather, animals and other hazards, and camouflaged with natural materials to blend in with the environment.

The Hanford Site Environmental Restoration Contractor team, with encouragement from the Department of Energy, conceived the tube design in 1995 as a way to expand groundwater monitoring. The Hanford Site produced plutonium for defense during and after World War II and is the scene of the world’s largest environmental cleanup project.

Traditional sampling wells provide the bulk of information used to track contamination as it migrates from Hanford toward the river. But they could not be installed on the shoreline because the area is difficult to access with a drill rig, is often under water and is culturally and ecologically sensitive. Because the installation and sampling equipment is lightweight and easily transported, researchers are able to access many sites by boat.

Site contractors equipped additional sites along the river with the samplers in 1997 and 2004. Today coverage includes 320 tubes located at 132 sites situated approximately half-mile apart along a 26-mile stretch of shoreline.

"Being able to monitor groundwater where we couldn’t put traditional wells has been a real benefit," said PNNL geologist Bob Peterson. "And being able to do it while leaving an area essentially untouched makes the sampling tubes an even better idea."

The tubes provide the ability to get an accurate picture of the vertical distribution of contaminants in groundwater at a specific location. The three tubes typically installed at each location vary in length, enabling the ports at the end of each tube to monitor three discreet depths in the aquifer.

The monitoring methodology has a wide variety of potential applications at sites other than Hanford, Peterson said. The simple equipment and installation logistics mean the aquifer tubes can be employed almost anywhere there is a need to monitor shallow groundwater systems or the saturated sediment zone associated with surface water bodies.

For example, the tubes could be used to monitor subsurface discharge from agricultural areas, river bottom subsurface habitat, estuary health, CERCLA site remedial investigations and EPA total maximum daily load of groundwater influx to streams and lakes, Peterson said. Installations also can be adapted to incorporate in situ instrumentation for continuous monitoring of conditions.

Business and public inquiries on this and other PNNL research and technologies should be directed to 1-888-375-PNNL or .

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 4,000 staff, has a $700 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Judith Graybeal | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>