Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Location system for wireless sensor networks


In recent years a great amount of integrated radio circuits have come onto the market. With this type of component available a new kind of application has arisen: wireless sensor networks.

With these systems, sensors, instead of being inside the circuit itself, are installed in autonomous circuits. Thus, work on control and measurement can be distributed, e.g. the measurement of magnitudes over a geographically widespread area. Nevertheless, for the systems described here to be economically viable, each node has to have very low costs, both in its design and in its production. The most important advantage of this type of network is that of duplication: with so many sensors participating in the operation of the network, if one fails, another will fulfil the function until the failed item can be replaced.

However, organising co-operation between so many nodes is no easy task. Given that all nodes have the same hardware and the same software and, moreover, are limited both in energy consumption and in the capacity of the process, the protocols used in these types of networks have to be designed to operate in these very special conditions. In the case in question, the co-operation processes may be greatly simplified if the location of each node is known and how the network is organised geographically. The great number of nodes makes it impossible to fix the position of all these manually; an automated method for each node to calculate its own position needs to be found.

In this PhD thesis, a new algorithm for finding the position of the nodes is put forward and developed. To this end, the distances separating the nodes are utilised. However, given that each sensor has to be very economic, the quality of measurement of these distances is not expected to be high and, consequently, location errors appear. Thus, the algorithm proposed here attempts to calculate the best estimate of the node position, in the knowledge that the distances involved have errors.

Finally, to analyse the results obtained with this algorithm, a simulation platform has been designed which enables a comparison of the performance of the method described here with that of other algorithms put forward in recent years. In this way the computational load imposed at the node can be tested and how the presence of errors affects the measurements in the result obtained.

Moreover, the algorithm was implemented in a real node in order to demonstrate that it can be used in the environment for which it was designed.

Garazi Andonegi | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>