Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coming to grips with robot learning

08.09.2005


A ‘living’ artificial hand that learns through imitation has been developed, enhancing human-machine communication and paving the way for novel prosthetic aides.



“The last decade has seen enormous advances in the design and implementation of all kinds of robot platforms,” says Alois Knoll of Technische Universität München and coordinator of the ArteSImit project. “However, their abilities to ‘learn’ how to solve even simple tasks are still very restricted.”

According to Knoll imitation is a powerful shortcut to successful task learning. “If a robot learner is shown a certain behaviour necessary for solving a task by an instructor, the motion alternatives for producing the goal-reaching behaviour with the learner’s own devices and effectors can be dramatically reduced,” says Knoll. “The learner would then try to mimic the coarse motions of the instructor and adapt them to achieve the same goal.”


Exploring the functional and neuropsychological mechanisms of imitation learning was the aim of the ArteSImit project funded by the Future and Emerging Technologies initiative of the IST programme. The overarching goal was to reveal the neurophysiological structures for finger and hand movements in humans and monkeys, and design a computer-operational dynamic model of imitation learning. The consortium constructed a fully functional visual-motor system for a limited domain to control a bio-analogue hand, which is thus capable of mimicking imitation behaviour.

The system implements the full visual serving loop in that it observes the environment with a camera, recognises the instructor’s gestures from a set of predefined gestures, makes the necessary decisions to achieve the goal, i.e. the appropriate sequence of actions of the arm, hand and finger movements. This is optimised in such a way that it is achieved with the minimum amount of motion. The visual system is highly innovative and unique: it recognises finger positions in a precise way through a novel algorithm with just one camera.

“Our final objective was to implement imitational learning on this artificial hand and to suggest applications of the new methods and models to other artefacts with many degrees of freedom that cooperate with humans,” says Knoll.

“We believe that the methods we developed in the ArteSImit project could be directly applied, for example, to new generations of prostheses. These could react for example to finger movements, controlled by a camera applying the concept of imitation, and additionally, they could be linked directly to the nerves.”

Research will be continued within the follow-up project JAST, which took up some of the ArteSImit findings. JAST aims to develop jointly-acting autonomous systems that communicate and work intelligently on mutual tasks in dynamic unstructured environments expanding the concept of group to human plus artificial agents.

Further potential applications of ArteSImit findings are numerous. “It could be applied to control instruments used for medical operations or even to capture and detect a person’s movement within a crowd of people. This method could be interesting for example for security systems,“ Knoll says. Although some of the results were mostly interesting for further basic research, there are some results, e.g. in the area of computer vision and object tracking, that could be phased out and be developed into useful products in their own right.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Power and Electrical Engineering:

nachricht Summer heat for the winter
10.01.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors
10.01.2017 | University of Illinois College of Engineering

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>