Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coming to grips with robot learning

08.09.2005


A ‘living’ artificial hand that learns through imitation has been developed, enhancing human-machine communication and paving the way for novel prosthetic aides.



“The last decade has seen enormous advances in the design and implementation of all kinds of robot platforms,” says Alois Knoll of Technische Universität München and coordinator of the ArteSImit project. “However, their abilities to ‘learn’ how to solve even simple tasks are still very restricted.”

According to Knoll imitation is a powerful shortcut to successful task learning. “If a robot learner is shown a certain behaviour necessary for solving a task by an instructor, the motion alternatives for producing the goal-reaching behaviour with the learner’s own devices and effectors can be dramatically reduced,” says Knoll. “The learner would then try to mimic the coarse motions of the instructor and adapt them to achieve the same goal.”


Exploring the functional and neuropsychological mechanisms of imitation learning was the aim of the ArteSImit project funded by the Future and Emerging Technologies initiative of the IST programme. The overarching goal was to reveal the neurophysiological structures for finger and hand movements in humans and monkeys, and design a computer-operational dynamic model of imitation learning. The consortium constructed a fully functional visual-motor system for a limited domain to control a bio-analogue hand, which is thus capable of mimicking imitation behaviour.

The system implements the full visual serving loop in that it observes the environment with a camera, recognises the instructor’s gestures from a set of predefined gestures, makes the necessary decisions to achieve the goal, i.e. the appropriate sequence of actions of the arm, hand and finger movements. This is optimised in such a way that it is achieved with the minimum amount of motion. The visual system is highly innovative and unique: it recognises finger positions in a precise way through a novel algorithm with just one camera.

“Our final objective was to implement imitational learning on this artificial hand and to suggest applications of the new methods and models to other artefacts with many degrees of freedom that cooperate with humans,” says Knoll.

“We believe that the methods we developed in the ArteSImit project could be directly applied, for example, to new generations of prostheses. These could react for example to finger movements, controlled by a camera applying the concept of imitation, and additionally, they could be linked directly to the nerves.”

Research will be continued within the follow-up project JAST, which took up some of the ArteSImit findings. JAST aims to develop jointly-acting autonomous systems that communicate and work intelligently on mutual tasks in dynamic unstructured environments expanding the concept of group to human plus artificial agents.

Further potential applications of ArteSImit findings are numerous. “It could be applied to control instruments used for medical operations or even to capture and detect a person’s movement within a crowd of people. This method could be interesting for example for security systems,“ Knoll says. Although some of the results were mostly interesting for further basic research, there are some results, e.g. in the area of computer vision and object tracking, that could be phased out and be developed into useful products in their own right.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>