Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple idea could revolutionise safety devices

08.09.2005


A simple but clever idea by a Bath engineer could revolutionise the way that safety devices across the world are constructed.



Dr Fayek Osman’s new concept could mean that devices such as train buffers, safety barriers and aircraft undercarriages will be much more efficient and cheaper.

Dr Osman, of the Department of Mechanical Engineering in the University of Bath, UK, has developed a concept for devices that can absorb enormous impact and yet still remain intact so that they can be used again.


Normally the impact of a crash on a safety device such as a train buffer will deform it so that it cannot be used again and must be replaced. Even ordinary stress on devices that absorb less dramatic impacts, such as aeroplane undercarriages, can wear them out quickly.

Dr Osman’s idea is that safety devices should be as simple as a piece of metal in a channel with a bend in it. During a crash, impact forces the metal down the channel, and the energy of the crash is absorbed by the metal as it travels around the bend towards the end of the channel.

The channel can then be turned around so that the next impact strikes the metal at the end of the channel and forces it back to its original starting point.

The devices should be cheap to make and would require no replacement after an impact. Their uses could include shock absorbers in artillery pieces, car bumper mounts, joints in bridges and cranes and shock absorbers in buildings in earthquake zones.

Another use would be to absorb physical efforts in sports equipment, and a team of Dr Osman’s students recently came third, winning a £1,000 prize, in the Bath Business Plan Competition for a plan to develop the technology for a new type of ‘weightless’ physical training equipments. A similar plan came second in a competition at Loughborough University.

Dr Osman is now seeking commercial backing for his idea, which he believes will save industry millions of pounds world-wide once his devices are widely introduced.

“The overall concept is simple, but it depends on a thorough knowledge of how metals behave when they are forced around a corner,” said Dr Osman.

“What makes devices based on this principle so effective is that they require no maintenance and can be used again and again – they are much cheaper to manufacture too.

“I think that these devices will be a great cost-saving to industry and can be used in an enormous range of areas from aircraft to artillery, and cars to bridges.”

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk/news/articles/business/safety-device070905.html

More articles from Power and Electrical Engineering:

nachricht Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>