Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rensselaer researcher to showcase new solar underwater robot technology


A new solar-powered underwater robot technology developed for undersea observation and water monitoring will be showcased at a Sept. 16 workshop on leading-edge robotics to be held at the National Science Foundation (NSF) in Arlington, Va.

Solar-powered Autonomous Underwater Vehicle (SAUV) Photo: RPI/Sanderson in collaboration with Autonomous Undersea Systems Institute, Falmouth Scientific Inc., and Naval Undersea Warfare Center.

Arthur C. Sanderson, professor of electrical, computer, and systems engineering at Rensselaer Polytechnic Institute, will display the robotic technology being developed by a team of research groups, including Rensselaer, and led by the Autonomous Undersea Systems Institute directed by D. Richard Blidberg.

Sanderson also will participate on a panel of six robotics experts who recently completed a study to be released at the Sept. 16 workshop. The World Technology Evaluation Center International Study of Robotics is a two-year look at robotics research and development in the United States, Japan, Korea, and Western Europe.

As the principal investigator of an NSF-funded project called RiverNet, Sanderson is working collaboratively with other researchers to develop a network of distributed sensing devices and water-monitoring robots, including the first solar-powered autonomous underwater vehicles (SAUVs).

“Once fully realized, this underwater robot technology will allow better observation and monitoring of complex aquatic systems, and will support advances in basic environmental science as well as applications to environmental management and security and defense programs,” said Sanderson.

The SAUV technology allows underwater robots to be deployed long-term by using solar power to replenish onboard energy. Long-term deployment of SAUVs will allow detection of chemical and biological trends in lakes, rivers, and waterways that may guide the management and improvement of water quality. Autonomous underwater vehicles equipped with sensors are currently used for water monitoring, but must be taken out of the water frequently to recharge the batteries.

According to Sanderson, the SAUVs communicate and network with one another in real time to assess a water body as a whole in measuring how it changes over space and time. Key technologies used in SAUVs include integrated sensor microsystems, pervasive computing, wireless communications, and sensor mobility with robotics. Sanderson notes that the underwater vehicles have captured the attention of the U.S. Navy, which will evaluate their use for coastal surveillance applications.

The SAUV weighs 370 pounds, travels at speeds of up to 2 miles per hour, and is designed to dive to depths of 500 meters.

Sanderson and his colleagues will continue field testing the vehicles in coming months at locations including Rensselaer’s Darrin Fresh Water Institute on Lake George, N.Y., to determine communication, interaction, and maneuvering capabilities in testing dissolved oxygen levels, one of the most important indicators of water quality for aquatic life.

Sanderson is collaborating on SAUV development with the Autonomous Undersea Systems Institute, Falmouth Scientific Inc., the Naval Undersea Warfare Center, and Technology Systems Inc.

The Sept. 16 workshop is sponsored by NSF, NASA, and the National Institutes of Health (NIH). The international robotics study was organized by the World Technology Evaluation Center, a United States-based organization conducting international research assessments.

“This gathering of researchers and their robots shows the necessity of federal support for basic research that leads to new technologies with useful applications in health care, the environment, and industry,” said Sanderson.

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Tiffany Lohwater | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>