Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of titanium in hydrogen storage

02.09.2005


As part of ongoing research to make hydrogen a mainstream source of clean, renewable energy, scientists from the U.S. Department of Energy’s Brookhaven National Laboratory have determined how titanium atoms help hydrogen atoms attach to an aluminum surface. Their study isolates the role of titanium, which is used as a catalyst in the crucial first step to trap hydrogen within a particular class of hydrogen-storage materials. The work may also help identify and develop similar hydrogen-storage systems.



Brookhaven chemist Santanu Chaudhuri will present this research at the 230th national meeting of the American Chemical Society in Washington, D.C. The talk is scheduled for Thursday, September 1, at 3:40 p.m. in room 142 of the Washington Convention Center.

To be a mainstream source of fuel, hydrogen must be stored safely and efficiently. Conventional high-pressure storage tanks can be dangerous and are too big and heavy for certain applications, such as hydrogen-based fuel cells in automobiles. Hydrogen-storage materials, however, incorporate hydrogen safely and compactly, and temporarily hold large quantities of it that can be recovered easily under safe, controlled conditions.


"A hydrogen-storage material must be able to store hydrogen quickly under ’normal’ conditions -- that is, without very high temperatures and pressures," said Chaudhuri. "In tiny amounts, an appropriate catalyst, such as titanium, can speed up the reaction and make the hydrogen-storage process suitable for practical applications. Our study has helped us better understand the role of these catalysts."

Through this research, Chaudhuri and his collaborator, Brookhaven chemist James Muckerman, hope to improve the performance of sodium alanate, a hydrogen-storage material composed of sodium and aluminum hydride. Sodium alanate, known as a "complex metal hydride," expels hydrogen gas (the fuel) and aluminum when heated, leaving a mixture of sodium hydride and metallic aluminum. But because neither aluminum nor sodium hydride absorb hydrogen well, putting the hydrogen back in -- to reform sodium alanate and allow reuse of the material -- becomes difficult.

"We found that aluminum absorbs significantly more hydrogen -- and does so more quickly and at lower temperatures -- when a small number of titanium atoms are incorporated into its surface," Chaudhuri said.

Chaudhuri and Muckerman created a computer model that provides a plausible mechanism of the reaction. Their model agrees with an experimental x-ray absorption study of sodium alanate, performed at the National Synchrotron Light Source, a facility at Brookhaven that produces x-ray, ultraviolet, and infrared light for research. Chaudhuri and Muckerman’s collaborators at Brookhaven used x-rays to "see" and thus calculate how the titanium atoms subtly changed the atomic-level structure of the aluminum, resulting in a more hydrogen-absorbent surface. Results from these two studies agree on the role of titanium atoms on an aluminum surface and mechanisms of subsequent steps in hydrogen capture.

In the future, Chaudhuri and Muckerman’s group plans to study the subsequent steps in the sodium alanate hydrogen-storage process, in which aluminum and hydrogen react with sodium hydride to reform the starting material.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>