Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue creates new method to drive fuel cells for portable electronics

29.08.2005


Engineers at Purdue University have developed a new way of producing hydrogen for fuel cells to automatically recharge batteries in portable electronics, such as notebook computers, and eliminate the need to use a wall outlet.



The findings will be presented Sunday (Aug. 28) during the annual meeting of the American Chemical Society in Washington, D.C., and also will be detailed in a peer-reviewed paper to appear in an upcoming issue of the journal Combustion and Flame. The paper was written by research scientist Evgeny Shafirovich, postdoctoral research associate Victor Diakov and Arvind Varma, the R. Games Slayter Distinguished Professor of Chemical Engineering and head of Purdue’s School of Chemical Engineering.

The researchers developed the new method earlier this year and envision a future system in which pellets of hydrogen-releasing material would be contained in disposable credit-card-size cartridges. Once the pellets were used up, a new cartridge would be inserted into devices such as cell phones, personal digital assistants, notebook computers, digital cameras, handheld medical diagnostic devices and defibrillators.


The method also might have military applications in portable electronics for soldiers and for equipment in spacecraft and submarines, Varma said.

The new technique combines two previously known methods for producing hydrogen. The previous methods have limitations making them impractical when used alone, but those drawbacks are overcome when the methods are combined, Varma said.

One of the methods was invented by Herbert C. Brown, a chemist and Nobel laureate from Purdue who discovered a compound called sodium borohydride during World War II. The compound contains sodium, boron and hydrogen. He later developed a technique for producing hydrogen by combining sodium borohydride with water and a catalyst. The method, however, has a major drawback because it requires expensive catalysts such as ruthenium.

The other method involves a chemical reaction in which tiny particles of aluminum are combined with water in such a way that the aluminum ignites, releasing hydrogen during the combustion process. This method does not require an expensive catalyst, but it yields insufficient quantities of hydrogen to be practical for fuel cell applications.

"Our solution is to combine both methods by using what we call a triple borohydride-metal-water mixture, which does not require a catalyst and has a high enough hydrogen yield to make the method promising for fuel cell applications," Varma said. "So far we have shown in experiments that we can convert 6.7 percent of the mixture to hydrogen, which means that for every 100 grams of mixture we can produce nearly 7 grams of hydrogen, and that yield is already better than alternative methods on the market."

The researchers have filed a provisional patent application for the technique and hope to increase the yield to about 10 percent through additional experiments, Shafirovich said.

Hydrogen produced by the method could be used to drive a fuel cell, which then would produce electricity to charge a battery. A computer chip would automatically detect when the battery needed to be recharged, activating a new pellet until all of the pellets on the cartridge were consumed. Byproducts from the reaction are environmentally benign and can either be safely discarded or recycled, Diakov said.

In addition to its potential use in portable electronics, the technology offers promise as an energy source to power hardware in spacecraft.

"The Apollo 13 accident was caused by an explosion involving liquid oxygen, which is needed along with liquid hydrogen to feed a fuel cell in spacecraft," Shafirovich said. "Use of chemical mixtures, such as ours, for generation of hydrogen and oxygen would eliminate the possibility of such an explosion."

A key step in the hydrogen-producing reaction is the use of tiny particles of aluminum only about as wide as 100 nanometers, or 100 billionths of a meter.

"You don’t want to use large lumps of aluminum because then you only get reactions on the outer surfaces of those lumps, so you don’t produce enough hydrogen," Varma said. "What you would rather use is tiny particles that have a high surface area, which enables them to completely react, leaving no waste and producing more hydrogen."

Another crucial component is a special gel created by combining water with a material called polyacrylamide.

"If you want to ignite a mixture of aluminum with water, the problem is that water boils at 100 degrees Centigrade and aluminum ignites at a much higher temperature," Shafirovich said. "So, if you try to ignite the mixture you just vaporize water and the aluminum doesn’t ignite.

"When we use this gel, water boils at a much higher temperature, and the nanoscale powder also decreases the ignition temperature of aluminum. So you are both increasing the boiling point of water and decreasing the ignition temperature of aluminum, making the reaction possible."

The researchers believe they will be able to safely dissipate the heat produced by the reaction, making the technology practical for portable electronics.

This research is supported by the Purdue Hydrogen Economy initiative of the College of Engineering and is being conducted as a part of Purdue’s new Energy Center, created this year at the university’s Discovery Park.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Arvind Varma, 765 494-4075, avarma@purdue.edu

Evgeny Shafirovich, (765) 496-2969, eshafir@purdue.edu

Victor Diakov, diakov@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>