Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue creates new method to drive fuel cells for portable electronics

29.08.2005


Engineers at Purdue University have developed a new way of producing hydrogen for fuel cells to automatically recharge batteries in portable electronics, such as notebook computers, and eliminate the need to use a wall outlet.



The findings will be presented Sunday (Aug. 28) during the annual meeting of the American Chemical Society in Washington, D.C., and also will be detailed in a peer-reviewed paper to appear in an upcoming issue of the journal Combustion and Flame. The paper was written by research scientist Evgeny Shafirovich, postdoctoral research associate Victor Diakov and Arvind Varma, the R. Games Slayter Distinguished Professor of Chemical Engineering and head of Purdue’s School of Chemical Engineering.

The researchers developed the new method earlier this year and envision a future system in which pellets of hydrogen-releasing material would be contained in disposable credit-card-size cartridges. Once the pellets were used up, a new cartridge would be inserted into devices such as cell phones, personal digital assistants, notebook computers, digital cameras, handheld medical diagnostic devices and defibrillators.


The method also might have military applications in portable electronics for soldiers and for equipment in spacecraft and submarines, Varma said.

The new technique combines two previously known methods for producing hydrogen. The previous methods have limitations making them impractical when used alone, but those drawbacks are overcome when the methods are combined, Varma said.

One of the methods was invented by Herbert C. Brown, a chemist and Nobel laureate from Purdue who discovered a compound called sodium borohydride during World War II. The compound contains sodium, boron and hydrogen. He later developed a technique for producing hydrogen by combining sodium borohydride with water and a catalyst. The method, however, has a major drawback because it requires expensive catalysts such as ruthenium.

The other method involves a chemical reaction in which tiny particles of aluminum are combined with water in such a way that the aluminum ignites, releasing hydrogen during the combustion process. This method does not require an expensive catalyst, but it yields insufficient quantities of hydrogen to be practical for fuel cell applications.

"Our solution is to combine both methods by using what we call a triple borohydride-metal-water mixture, which does not require a catalyst and has a high enough hydrogen yield to make the method promising for fuel cell applications," Varma said. "So far we have shown in experiments that we can convert 6.7 percent of the mixture to hydrogen, which means that for every 100 grams of mixture we can produce nearly 7 grams of hydrogen, and that yield is already better than alternative methods on the market."

The researchers have filed a provisional patent application for the technique and hope to increase the yield to about 10 percent through additional experiments, Shafirovich said.

Hydrogen produced by the method could be used to drive a fuel cell, which then would produce electricity to charge a battery. A computer chip would automatically detect when the battery needed to be recharged, activating a new pellet until all of the pellets on the cartridge were consumed. Byproducts from the reaction are environmentally benign and can either be safely discarded or recycled, Diakov said.

In addition to its potential use in portable electronics, the technology offers promise as an energy source to power hardware in spacecraft.

"The Apollo 13 accident was caused by an explosion involving liquid oxygen, which is needed along with liquid hydrogen to feed a fuel cell in spacecraft," Shafirovich said. "Use of chemical mixtures, such as ours, for generation of hydrogen and oxygen would eliminate the possibility of such an explosion."

A key step in the hydrogen-producing reaction is the use of tiny particles of aluminum only about as wide as 100 nanometers, or 100 billionths of a meter.

"You don’t want to use large lumps of aluminum because then you only get reactions on the outer surfaces of those lumps, so you don’t produce enough hydrogen," Varma said. "What you would rather use is tiny particles that have a high surface area, which enables them to completely react, leaving no waste and producing more hydrogen."

Another crucial component is a special gel created by combining water with a material called polyacrylamide.

"If you want to ignite a mixture of aluminum with water, the problem is that water boils at 100 degrees Centigrade and aluminum ignites at a much higher temperature," Shafirovich said. "So, if you try to ignite the mixture you just vaporize water and the aluminum doesn’t ignite.

"When we use this gel, water boils at a much higher temperature, and the nanoscale powder also decreases the ignition temperature of aluminum. So you are both increasing the boiling point of water and decreasing the ignition temperature of aluminum, making the reaction possible."

The researchers believe they will be able to safely dissipate the heat produced by the reaction, making the technology practical for portable electronics.

This research is supported by the Purdue Hydrogen Economy initiative of the College of Engineering and is being conducted as a part of Purdue’s new Energy Center, created this year at the university’s Discovery Park.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Arvind Varma, 765 494-4075, avarma@purdue.edu

Evgeny Shafirovich, (765) 496-2969, eshafir@purdue.edu

Victor Diakov, diakov@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>