Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell-developed micro-switch uses water droplets for bonding, mimicking palm-beetle’s leaf-clinging technique

23.08.2005


Vogel/Steen, copyright PNAS
The droplet switch shown here toggles between a big droplet positioned above and below the plate using applied voltage. This novel electro-mechanical switch is capable of working by itself or in larger arrays, and has fast switching times with low voltages, no moving solid parts and can be made very small. Applications are envisioned in the areas of mechanics, micro-fluidics and optics, among others.


Imagine this: A tiny, fast switch that uses water droplets to create adhesive bonds almost as strong as aluminum by borrowing a mechanism found in palm beetles.

The new beetle-inspired switch, designed by Cornell University engineers, can work by itself on the scale of a micron -- a millionth of a meter. The switches can be combined in arrays for larger applications like powerful adhesive bonding. Like the transistor, whose varied uses became apparent only following its invention, the uses of the new switch are not yet understood. But the switch’s simplicity, smallness and speed have enormous potential, according to the researchers.

"Almost all the greatest technological advances have depended on switches, and this is a switch that is fast and can be scaled down," said Paul Steen, a professor of chemical and biomolecular engineering at Cornell and co-author of a paper published in the Proceedings of the National Academy of Sciences (Vol. 102, No. 34).



Steen dreamed up the idea of the switch after listening to Cornell entomologist Tom Eisner lecture on palm beetles, which are native to the southeastern United States.

Like the beetle, which clings to a palm leaf at adhesive strengths equal to a hundred times its own body weight -- the human equivalent of carrying seven cars -- the switch in its most basic form uses surface tension created by water droplets in contact with a surface, in much the same way as two pieces of wet paper cling together.

When attacked, the palm beetle attaches itself to a leaf until the attacker leaves. It adheres with 120,000 droplets of secreted oil, each making a bridgelike contact between the beetle’s feet and the leaf. Each droplet is just a few microns wide. Whereas the beetle controls the oil contacts mechanically, Steen’s switch uses water and electricity.

For the switch to make or release a bond created by surface tension, a water droplet moves to the top or bottom of a flat plate surface using electricity from electrodes. The electricity moves positively charged atoms, called ions, in the water through the minute capillaries of a thin disk of porous glass embedded in the plate. The water moves and wells up into a micrometer-sized droplet on the plate surface. The exposed droplet can then stick to another surface. To break the bond, electricity pulls the exposed water back through the capillary pores.

With millimeter-sized water droplets and micron-sized pores, 5 volts can turn the switch on in one second. At the same time, the researchers predict that smaller droplets will require less energy to move and have faster switching times. Steen and his colleagues believe that a switch as small as hundreds of nanometers, close to a billionth of a meter and one-tenth the size of the beetle droplets, is within reach. Researchers could also create large effects from many tiny switches by connecting them in various arrangements, Steen said.

"This new technology bridges the gap between scales as large as our hands and nanoscales," said Steen. "We need devices that allow us to communicate between the two scales."

Co-authors include Michael Vogel, a postdoctoral researcher in Cornell’s Department of Chemical and Biomolecular Engineering, and researcher Peter Ehrhard at the Institute for Nuclear and Energy Technologies in Karlsruhe, Germany. Since much of this work was conducted while the three scientists were at the German institute, the patent application was filed in Germany.

The study was supported by NASA, the National Science Foundation, the Forschungszentrum Karlsruhe and the Deutscher Akademischer Austausch Dienst.

Nicola Pytell | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>