Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalyst support structures facilitate high-temperature fuel reforming

28.07.2005


The catalytic reforming of liquid fuels offers an attractive solution to supplying hydrogen to fuel cells while avoiding the safety and storage issues related to gaseous hydrogen. Existing catalytic support structures, however, tend to break down at the high temperatures needed to prevent fouling of the catalytic surface by soot.



Now, researchers at the University of Illinois at Urbana-Champaign have developed porous support materials that can withstand the rigors of high-temperature reforming of hydrocarbon fuels.

"These novel materials show great promise for the on-demand reforming of hydrocarbons such as diesel fuel into hydrogen for portable power sources," said Paul Kenis, a professor of chemical and biomolecular engineering at Illinois and a corresponding author of a paper to appear in the August issue of the journal Advanced Functional Materials.


To be useful for hydrocarbon fuel reforming, a catalyst support must have a high surface area, be stable at high temperatures, and possess a low pressure drop.

"Our new materials satisfy all three key requirements," said Kenis, who also is a researcher at the Beckman Institute for Advanced Science and Technology. "They have a large surface area created by a network of interconnected pores. They can operate at temperatures above 800 degrees Celsius, which prevents the formation of soot on the catalytic surfaces. And they have a low pressure drop, which means it takes less pressure to push the fuel through the catalyst."

To fabricate the supports, the researchers begin by placing a polydimethylsiloxane (PDMS) mold onto a flat surface, forming a channel about 500 microns wide that is open at both ends. A slurry containing polystyrene spheres 50 nanometers to 10 microns in diameter is then allowed to flow into the channel from one end by capillary action.

"Once the slurry reaches the other end of the channel, the spheres begin to pack together as a result of solvent evaporation, and the packing process continues toward the inlet end," Kenis said. "After the packing process is completed, we remove any remaining solvent, which leaves a sacrificial template consisting of a bed of closely packed spheres."

Next, the researchers fill the spaces between the spheres with a low-viscosity, preceramic polymer-based liquid. After low-temperature curing, the mold is removed, leaving a stable, freestanding structure.

Lastly, the cured ceramic precursor is pyrolyzed at 1,200 degrees Celsius for two hours in an inert atmosphere. "The polystyrene spheres decompose during the pyrolysis process," Kenis said. "The end result is a silicon carbide or silicon carbonitride replica with a tailored structure of interconnected pores."

The overall size of the replica can be precisely tailored through the dimensions of the mold, Kenis said, while the pore size can be tailored independently by the size of spheres used in the sacrificial template.

To demonstrate the use of these materials as catalyst supports, the researchers coated samples of the porous structure with ruthenium. The structure was then incorporated within a stainless steel housing, where it successfully stripped hydrogen from ammonia at temperatures up to 500 degrees Celsius. In work not yet published, Kenis and his colleagues incorporated the structure in a ceramic housing, which enabled the successful decomposition of ammonia at operating temperatures up to 1,000 degrees Celsius.

The researchers also showed that the silicon carbide and silicon carbonitride structures are stable at temperatures as high as 1,200 degrees Celsius in air, thus showing their promise to perform fuel reforming at temperatures where fouling of the catalyst by soot does not occur.

While the demonstration was performed on a microscale reformer, the material could be used for large-scale reformers, Kenis said, with improvements in the fabrication processes.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>