Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalyst support structures facilitate high-temperature fuel reforming

28.07.2005


The catalytic reforming of liquid fuels offers an attractive solution to supplying hydrogen to fuel cells while avoiding the safety and storage issues related to gaseous hydrogen. Existing catalytic support structures, however, tend to break down at the high temperatures needed to prevent fouling of the catalytic surface by soot.



Now, researchers at the University of Illinois at Urbana-Champaign have developed porous support materials that can withstand the rigors of high-temperature reforming of hydrocarbon fuels.

"These novel materials show great promise for the on-demand reforming of hydrocarbons such as diesel fuel into hydrogen for portable power sources," said Paul Kenis, a professor of chemical and biomolecular engineering at Illinois and a corresponding author of a paper to appear in the August issue of the journal Advanced Functional Materials.


To be useful for hydrocarbon fuel reforming, a catalyst support must have a high surface area, be stable at high temperatures, and possess a low pressure drop.

"Our new materials satisfy all three key requirements," said Kenis, who also is a researcher at the Beckman Institute for Advanced Science and Technology. "They have a large surface area created by a network of interconnected pores. They can operate at temperatures above 800 degrees Celsius, which prevents the formation of soot on the catalytic surfaces. And they have a low pressure drop, which means it takes less pressure to push the fuel through the catalyst."

To fabricate the supports, the researchers begin by placing a polydimethylsiloxane (PDMS) mold onto a flat surface, forming a channel about 500 microns wide that is open at both ends. A slurry containing polystyrene spheres 50 nanometers to 10 microns in diameter is then allowed to flow into the channel from one end by capillary action.

"Once the slurry reaches the other end of the channel, the spheres begin to pack together as a result of solvent evaporation, and the packing process continues toward the inlet end," Kenis said. "After the packing process is completed, we remove any remaining solvent, which leaves a sacrificial template consisting of a bed of closely packed spheres."

Next, the researchers fill the spaces between the spheres with a low-viscosity, preceramic polymer-based liquid. After low-temperature curing, the mold is removed, leaving a stable, freestanding structure.

Lastly, the cured ceramic precursor is pyrolyzed at 1,200 degrees Celsius for two hours in an inert atmosphere. "The polystyrene spheres decompose during the pyrolysis process," Kenis said. "The end result is a silicon carbide or silicon carbonitride replica with a tailored structure of interconnected pores."

The overall size of the replica can be precisely tailored through the dimensions of the mold, Kenis said, while the pore size can be tailored independently by the size of spheres used in the sacrificial template.

To demonstrate the use of these materials as catalyst supports, the researchers coated samples of the porous structure with ruthenium. The structure was then incorporated within a stainless steel housing, where it successfully stripped hydrogen from ammonia at temperatures up to 500 degrees Celsius. In work not yet published, Kenis and his colleagues incorporated the structure in a ceramic housing, which enabled the successful decomposition of ammonia at operating temperatures up to 1,000 degrees Celsius.

The researchers also showed that the silicon carbide and silicon carbonitride structures are stable at temperatures as high as 1,200 degrees Celsius in air, thus showing their promise to perform fuel reforming at temperatures where fouling of the catalyst by soot does not occur.

While the demonstration was performed on a microscale reformer, the material could be used for large-scale reformers, Kenis said, with improvements in the fabrication processes.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>