Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Catalyst support structures facilitate high-temperature fuel reforming


The catalytic reforming of liquid fuels offers an attractive solution to supplying hydrogen to fuel cells while avoiding the safety and storage issues related to gaseous hydrogen. Existing catalytic support structures, however, tend to break down at the high temperatures needed to prevent fouling of the catalytic surface by soot.

Now, researchers at the University of Illinois at Urbana-Champaign have developed porous support materials that can withstand the rigors of high-temperature reforming of hydrocarbon fuels.

"These novel materials show great promise for the on-demand reforming of hydrocarbons such as diesel fuel into hydrogen for portable power sources," said Paul Kenis, a professor of chemical and biomolecular engineering at Illinois and a corresponding author of a paper to appear in the August issue of the journal Advanced Functional Materials.

To be useful for hydrocarbon fuel reforming, a catalyst support must have a high surface area, be stable at high temperatures, and possess a low pressure drop.

"Our new materials satisfy all three key requirements," said Kenis, who also is a researcher at the Beckman Institute for Advanced Science and Technology. "They have a large surface area created by a network of interconnected pores. They can operate at temperatures above 800 degrees Celsius, which prevents the formation of soot on the catalytic surfaces. And they have a low pressure drop, which means it takes less pressure to push the fuel through the catalyst."

To fabricate the supports, the researchers begin by placing a polydimethylsiloxane (PDMS) mold onto a flat surface, forming a channel about 500 microns wide that is open at both ends. A slurry containing polystyrene spheres 50 nanometers to 10 microns in diameter is then allowed to flow into the channel from one end by capillary action.

"Once the slurry reaches the other end of the channel, the spheres begin to pack together as a result of solvent evaporation, and the packing process continues toward the inlet end," Kenis said. "After the packing process is completed, we remove any remaining solvent, which leaves a sacrificial template consisting of a bed of closely packed spheres."

Next, the researchers fill the spaces between the spheres with a low-viscosity, preceramic polymer-based liquid. After low-temperature curing, the mold is removed, leaving a stable, freestanding structure.

Lastly, the cured ceramic precursor is pyrolyzed at 1,200 degrees Celsius for two hours in an inert atmosphere. "The polystyrene spheres decompose during the pyrolysis process," Kenis said. "The end result is a silicon carbide or silicon carbonitride replica with a tailored structure of interconnected pores."

The overall size of the replica can be precisely tailored through the dimensions of the mold, Kenis said, while the pore size can be tailored independently by the size of spheres used in the sacrificial template.

To demonstrate the use of these materials as catalyst supports, the researchers coated samples of the porous structure with ruthenium. The structure was then incorporated within a stainless steel housing, where it successfully stripped hydrogen from ammonia at temperatures up to 500 degrees Celsius. In work not yet published, Kenis and his colleagues incorporated the structure in a ceramic housing, which enabled the successful decomposition of ammonia at operating temperatures up to 1,000 degrees Celsius.

The researchers also showed that the silicon carbide and silicon carbonitride structures are stable at temperatures as high as 1,200 degrees Celsius in air, thus showing their promise to perform fuel reforming at temperatures where fouling of the catalyst by soot does not occur.

While the demonstration was performed on a microscale reformer, the material could be used for large-scale reformers, Kenis said, with improvements in the fabrication processes.

James E. Kloeppel | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>