Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalyst support structures facilitate high-temperature fuel reforming

28.07.2005


The catalytic reforming of liquid fuels offers an attractive solution to supplying hydrogen to fuel cells while avoiding the safety and storage issues related to gaseous hydrogen. Existing catalytic support structures, however, tend to break down at the high temperatures needed to prevent fouling of the catalytic surface by soot.



Now, researchers at the University of Illinois at Urbana-Champaign have developed porous support materials that can withstand the rigors of high-temperature reforming of hydrocarbon fuels.

"These novel materials show great promise for the on-demand reforming of hydrocarbons such as diesel fuel into hydrogen for portable power sources," said Paul Kenis, a professor of chemical and biomolecular engineering at Illinois and a corresponding author of a paper to appear in the August issue of the journal Advanced Functional Materials.


To be useful for hydrocarbon fuel reforming, a catalyst support must have a high surface area, be stable at high temperatures, and possess a low pressure drop.

"Our new materials satisfy all three key requirements," said Kenis, who also is a researcher at the Beckman Institute for Advanced Science and Technology. "They have a large surface area created by a network of interconnected pores. They can operate at temperatures above 800 degrees Celsius, which prevents the formation of soot on the catalytic surfaces. And they have a low pressure drop, which means it takes less pressure to push the fuel through the catalyst."

To fabricate the supports, the researchers begin by placing a polydimethylsiloxane (PDMS) mold onto a flat surface, forming a channel about 500 microns wide that is open at both ends. A slurry containing polystyrene spheres 50 nanometers to 10 microns in diameter is then allowed to flow into the channel from one end by capillary action.

"Once the slurry reaches the other end of the channel, the spheres begin to pack together as a result of solvent evaporation, and the packing process continues toward the inlet end," Kenis said. "After the packing process is completed, we remove any remaining solvent, which leaves a sacrificial template consisting of a bed of closely packed spheres."

Next, the researchers fill the spaces between the spheres with a low-viscosity, preceramic polymer-based liquid. After low-temperature curing, the mold is removed, leaving a stable, freestanding structure.

Lastly, the cured ceramic precursor is pyrolyzed at 1,200 degrees Celsius for two hours in an inert atmosphere. "The polystyrene spheres decompose during the pyrolysis process," Kenis said. "The end result is a silicon carbide or silicon carbonitride replica with a tailored structure of interconnected pores."

The overall size of the replica can be precisely tailored through the dimensions of the mold, Kenis said, while the pore size can be tailored independently by the size of spheres used in the sacrificial template.

To demonstrate the use of these materials as catalyst supports, the researchers coated samples of the porous structure with ruthenium. The structure was then incorporated within a stainless steel housing, where it successfully stripped hydrogen from ammonia at temperatures up to 500 degrees Celsius. In work not yet published, Kenis and his colleagues incorporated the structure in a ceramic housing, which enabled the successful decomposition of ammonia at operating temperatures up to 1,000 degrees Celsius.

The researchers also showed that the silicon carbide and silicon carbonitride structures are stable at temperatures as high as 1,200 degrees Celsius in air, thus showing their promise to perform fuel reforming at temperatures where fouling of the catalyst by soot does not occur.

While the demonstration was performed on a microscale reformer, the material could be used for large-scale reformers, Kenis said, with improvements in the fabrication processes.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>