Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using chemistry for electronics and vice versa

07.07.2005


The microelectronics industry is continually striving to miniaturize conventional silicon-based electronic devices to provide higher performance technology that can be housed in smaller packaging.



Progress resulting from this miniaturization is evident from the rapid advances in consumer electronics, such as cell phones and laptop computers, that have been observed in recent years. Now, silicon-based molecular electronics -- a complementary technology to conventional microelectronics that could scale down electronic devices to the nanometer length scale -- may provide the next breakthrough in miniaturization.

"Molecular electronics offers the potential of utilizing individual organic molecules for electronic device applications," said Mark Hersam, assistant professor of materials science and engineering at the Northwestern University McCormick School of Engineering and Applied Science. "A single molecule device likely represents the ultimate scalability of electronic technology."


Hersam and graduate students Nathan Guisinger and Nathan Yoder recently reported their research advances in silicon-based molecular electronics as the cover article of the June 21, 2005 issue of the Proceedings of the National Academy of Sciences (http://www.pnas.org/cgi/content/short/102/25/8838).

In this work, a custom built cryogenic variable temperature ultra-high vacuum scanning tunneling microscope was utilized for imaging and probing individual organic molecules on silicon. At the cryogenic temperature of 80 Kelvin, the precision of these measurements surpassed previous efforts accomplished at room temperature. With this unprecedented data, the design constraints for silicon-based molecular electronic devices have been refined, Hersam said.

In an interesting twist, this study has also provided insight into the chemical and electronic structure of organic molecules mounted on silicon substrates. While the Northwestern study initially intended to use novel chemistry to improve electronics, the resulting molecular electronic device has also provided unique insight into the fundamentals of surface chemistry. In this manner, the work is likely to have impact in other fields, such as sensing, catalysis, and lubrication, where surface chemistry plays an active role. The research was supported by the National Science Foundation, Army Research Office and NASA.

Charles Loebbaka | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>