Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using chemistry for electronics and vice versa

07.07.2005


The microelectronics industry is continually striving to miniaturize conventional silicon-based electronic devices to provide higher performance technology that can be housed in smaller packaging.



Progress resulting from this miniaturization is evident from the rapid advances in consumer electronics, such as cell phones and laptop computers, that have been observed in recent years. Now, silicon-based molecular electronics -- a complementary technology to conventional microelectronics that could scale down electronic devices to the nanometer length scale -- may provide the next breakthrough in miniaturization.

"Molecular electronics offers the potential of utilizing individual organic molecules for electronic device applications," said Mark Hersam, assistant professor of materials science and engineering at the Northwestern University McCormick School of Engineering and Applied Science. "A single molecule device likely represents the ultimate scalability of electronic technology."


Hersam and graduate students Nathan Guisinger and Nathan Yoder recently reported their research advances in silicon-based molecular electronics as the cover article of the June 21, 2005 issue of the Proceedings of the National Academy of Sciences (http://www.pnas.org/cgi/content/short/102/25/8838).

In this work, a custom built cryogenic variable temperature ultra-high vacuum scanning tunneling microscope was utilized for imaging and probing individual organic molecules on silicon. At the cryogenic temperature of 80 Kelvin, the precision of these measurements surpassed previous efforts accomplished at room temperature. With this unprecedented data, the design constraints for silicon-based molecular electronic devices have been refined, Hersam said.

In an interesting twist, this study has also provided insight into the chemical and electronic structure of organic molecules mounted on silicon substrates. While the Northwestern study initially intended to use novel chemistry to improve electronics, the resulting molecular electronic device has also provided unique insight into the fundamentals of surface chemistry. In this manner, the work is likely to have impact in other fields, such as sensing, catalysis, and lubrication, where surface chemistry plays an active role. The research was supported by the National Science Foundation, Army Research Office and NASA.

Charles Loebbaka | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>