Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create first nanofluidic transistor, the basis of future chemical processors

30.06.2005


A nanofluidic transistor, too small to see with the naked eye, could allow the creation of microscopic chemical plants that operate without moving parts. As seen in the diagram below, the flow of ions through the liquid inside the nanotube (blue) is shut off by a voltage at the gate (yellow). (Images courtesy Majumdar & Yang labs)



University of California, Berkeley, researchers have invented a variation on the standard electronic transistor, creating the first "nanofluidic" transistor that allows them to control the movement of ions through sub-microscopic, water-filled channels.

The researchers - a chemist and a mechanical engineer - predict that, just as the electronic transistor became the main component of microprocessors and integrated circuits, so will nanofluidic transistors anchor molecular processors, allowing microscopic chemical plants on a chip that operate without moving parts. No valves to get stuck, no pumps to blow, no mixers to get clogged.

"A transistor is like a valve, but you use electricity to open or close it," explained Arun Majumdar, professor of mechanical engineering at UC Berkeley. "Here, we use a voltage to open or close an ion channel. Now that we’ve shown you can make this building block, we can hook it up to an electronic chip to control the fluidics."



One application Majumdar and colleague Peidong Yang, UC Berkeley professor of chemistry, are exploring is cancer diagnosis. A nanoscale chemical analysis chip could, theoretically, take the contents of as few as 10 cancer cells and pull out protein markers that can tip doctors to the best means of attacking the cancer.

"This is an ideal way to open up cells and identify the proteins or enzymes inside," he said. "An enzyme profile would tell doctors a lot about the kind of cancer, especially in its early stages when there are only a few cells around."

Yang, who built a variation of the transistor using nanotubes, is equally intrigued by the computational possibilities of the device.

"It may sound a little bit far fetched, but we’re thinking about whether we can do the same thing with nanofluidic transistors as we can currently with MOSFETs," he said, referring to the Metal-Oxide Semiconductor Field Effect Transistors used in most of today’s microprocessor chips. "Using molecules to process information gives you a fundamentally different information processing device."

Majumdar, Yang and colleagues Rohit Karnik, a mechanical engineering graduate student; Rong Fan, a chemistry graduate student; and mechanical engineering students Min Yue and Deyu Li reported their success - the product of three years of effort - in the May issue of the journal Nanoletters. Yang and Majumdar are also faculty scientists at Lawrence Berkeley National Laboratory.

One big advantage of nanofluidic transistors, Majumdar said, is that they could be made using the same manufacturing technology that today produces integrated circuits. Nanofluidic channels could be integrated with electronics on a single silicon chip, with the electronics controlling the operation of the nanofluidics. The only microscale parts of the device are the microchannels for injecting liquid.

Majumdar and Yang’s team constructed a 35-nanometer-high channel between two silicon dioxide plates, then filled the channel with water and potassium chloride salt. They showed that by applying a voltage across the channel by means of electrodes attached to the plates, they could shut off the flow of potassium ions through the water. This is analogous to the control of electron flow through a transistor by means of a gate voltage.

Such ion manipulations are not possible through microscopic channels because ions in the liquid quickly move to the plates and cancel out the voltage, basically shielding the interior of the liquid from the electric field. Channels less than 100 nanometers across, however, are so small that this shielding doesn’t occur, so ions in the bulk liquid can be pushed or pulled by electric voltages.

If the ions are proteins, they can be shuttled through channels lined with fluorescent antibodies for detecting or sensing. If the ions are pieces of DNA, they can be sorted and sequenced. In fact, the authors say, any highly sensitive biomolecular sensing down to the level of a single molecule could be performed with nanofluidic transistors. They demonstrated that labeled, charged DNA fragments could be manipulated in their transistor.

Yang, who is adept at making nanoscale lasers, tubes, wires and other devices, created a version of the transistor using nanotubes with internal diameters of 20 nanometers, proving that the same sort of molecular processing can be done with these innovative structures. While Majumdar foresees putting electronic and nanofluidic transistors on the same chip to provide computer control of chemical processing, Yang foresees the computing and chemical processing being done by the same nanofluidic channels.

"With nanotubes, you have access to much smaller dimensions compared to conventional nanofabrication, but in terms of integration, it’s more difficult," Yang said. "For the future, both processes are fundamentally interesting, and eventually devices will combine both."

Majumdar and Yang acknowledge that a lot more work needs to be done, including understanding the surface effects inside nanochannels. In addition, the voltage required to shut off ion flow is now 75 volts, far too high for any of today’s integrated circuits. But their team has a few other papers waiting to appear in Nanoletters and in the Physical Review Letters that push the technology farther than this initial paper. They hope to beat the time lag between invention of the transistor in 1947 and creation of the first integrated circuit in 1960.

"We want to be the first to build integrated circuits with just three transistors able to do sorting and eluting, just as a two- or three-bit processor can do multiplexing and addressing," Majumdar said.

The work was supported by the National Cancer Institute’s Innovative Molecular Analysis Technologies program and by the Department of Energy. Current work is being funded by the National Science Foundation.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>