Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid cooling with microfluidic channels helps computer processors beat the heat

21.06.2005


Integrated onto the backs of chips



A new technique for fabricating liquid cooling channels onto the backs of high-performance integrated circuits could allow denser packaging of chips while providing better temperature control and improved reliability.

Developed at the Georgia Institute of Technology, the wafer-level fabrication technique includes polymer pipes that will allow electronic and cooling interconnections to be made simultaneously using automated manufacturing processes. The low-temperature technique, which is compatible with conventional microelectronics manufacturing processing, allows fabrication of the microfluidic cooling channels without damage to integrated circuits.


The on-chip microfluidic technique was described June 7th at the eighth annual IEEE International Interconnect Conference in San Francisco, CA. The research was sponsored by the Microelectronics Advanced Research Corporation (MARCO) and the Defense Advanced Research Projects Agency (DARPA).

"This scheme offers a simple and compact solution to transfer cooling liquid directly into a gigascale integrated (GSI) chip, and is fully compatible with conventional flip-chip packaging," said Bing Dang, a Graduate Research Assistant in Georgia Tech’s School of Electrical and Computer Engineering. "By integrating the cooling microchannels directly into the chip, we can eliminate a lot of the thermal interface issues that are of great concern."

As the power density of high-performance integrated circuits increases, cooling the devices has become a more significant concern. Conventional cooling techniques, which depend on heat sinks on the backs of ICs to transfer heat into streams of forced air, will be unable to meet the needs of future power-hungry devices – especially 3D multi-chip modules that will pack more processing power into less space.

High temperatures can cause early failure of the devices due to electromigration. By controlling average operating temperature and cooling hot-spots, liquid cooling can enhance reliability of the integrated circuits, Dang noted. Lower operating temperatures also mean a smaller thermal-excursion between silicon and low-cost organic package substrates that expand at different rates.

Some liquid cooling techniques are already in production or at a research stage, circulating liquid through separate cooling modules attached to the integrated circuits, or through microchannels fabricated onto the back of chips using high-temperature bonding techniques. These approaches have disadvantages, including limited heat transfer through the modules and potential thermal damage to the chips caused by bonding temperatures that range from 400 to 700 degrees Celsius.

The Georgia Tech approach allows a simple monolithic fabrication of cooling channels directly onto integrated circuits using a CMOS-compatible technique at temperatures of less than 260 degrees Celsius.

"Once the integrated circuit is fabricated, it cannot withstand high temperatures without causing damage," said Dang. "People are looking at liquid cooling in all forms to solve the thermal issues affecting advanced integrated circuits, and the goal is to prevent damage to the chips. We have invented a new way to do it."

The Georgia Tech researchers, who include Paul Joseph, Muhannad Bakir, Todd Spencer, Paul Kohl and James Meindl, begin by etching trenches more than 100 microns deep on the back of the silicon wafer. They then spin-coat a layer of high-viscosity sacrificial polymer onto the back of the chip, filling in the trenches. Next, a simple polishing step removes excess polymer.

The filled trenches are then covered by a porous overcoat, and the chip is gradually heated in a nitrogen environment. The heating causes the sacrificial polymer filling the trenches to decompose and leave the channels through the porous overcoat, leaving microfluidic channels behind. The porous overcoat is then covered with another polymer layer to make a watertight system.

In addition to the cooling channels, the researchers have also built through-chip holes and polymer pipes that would allow the on-chip cooling system to be connected to embedded fluidic channels built into a printed wiring board. They have already demonstrated that the on-chip microfluidic channels can be connected at the same time the IC is connected electronically – using a conventional automated process known as flip-chip bonding.

The system would use buffered de-ionized water as its coolant. Self-contained cooling systems would circulate coolant using a centimeter-size micro-pump, while more complex equipment could use a centralized circulation system. The researchers have so far demonstrated that their microchannels can withstand pressure of more than 35 pounds per square inch – the equivalent to the air pressure used in passenger-car tires.

Calculations show that the system, which can have either straight-line or serpentine microchannel configurations, should be able to cool 100 watts per square-centimeter. Heat removal capacity depends on the flow rate of the coolant and its pressure, with smaller diameter microchannels more efficient at heat transfer.

Dang expects the technology to be used first in high-performance specialty processors that can justify the cost of the cooling system. So far, the researchers have demonstrated continuous liquid flow on a chip for several hours without failure, but additional testing is still needed to confirm long-term reliability, he added.

By eliminating the large heat sinks and heat spreaders, along with high-aspect ratio fins, the technology could allow denser packaging of integrated circuits, making 3D packaging feasible.

"The challenge of 3D integration now is that if you have several chips stacked on one another, there is no way to cool the chips in between," Dang said. "If we have microchannels on the back side of each chip, we could pump liquid through them and cool all of the chips."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>