Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Water Vapor Sensor Takes to the Skies

16.06.2005


By pairing a sleek new air sampler designed at the University Corporation for Atmospheric Research (UCAR) with a diode laser from SpectraSensors, Inc., researchers have hit on a technology that can capture highly accurate atmospheric water vapor data during routine commercial flights. The data will benefit researchers and forecasters, who need more frequent, accurate measurements at various altitudes worldwide to improve weather forecasts and monitor climate change.



Currently water vapor data is gathered by an older style of sensor using a thin-film capacitor. These sensors are launched on weather balloons every 12 hours from stations around the country. Satellites also gather water vapor data, but at low vertical resolution. The WVSS II aboard commercial flights will gather data more often, at higher vertical resolution, and at lower cost than satellites and balloons.

"Water vapor sounds boring," says recently retired UCAR scientist Rex Fleming, who designed the innovative air sampler, "but it’s essential to almost everything that happens in the atmosphere." Better water vapor data from around the U.S. and the world can improve forecasts of thunderstorms, microbursts, turbulence, fog, ceiling visibility, rotating wakes from other aircraft, snow and ice storms, and year-round precipitation, he says.


Water vapor also plays an important role in small storms that develop quickly and wreak havoc with airline schedules and safety. The Federal Aviation Administration estimates these storms can cost the aviation industry more than $1 billion annually.

Improved aviation weather forecasts can make flying safer, allow airlines to expand the number and location of routes, provide alternate landing options, and save fuel. Over the long term, the new data can verify computer model projections of climate change, which indicate water vapor steadily increasing in Earth’s atmosphere. As a greenhouse gas, water vapor is 10 times more potent than carbon dioxide and its increase is a key factor in the rising global temperatures appearing in the models.

The FAA certified the WVSS II for commercial aircraft flights last December. Preliminary results show the WVSS II data are highly consistent with the balloon data up to 35,000 feet. This month’s tests should lead to verification of the sensing system for other uses by forecasters, air traffic controllers, and research scientists.

"In a typical year, more water in the form of vapor and clouds flows over the dry state of Arizona than flows down the Mississippi River," says Fleming. "Yet we have not had a sensing system to collect accurate water vapor data frequently enough to be really useful for forecasts." Commercial aircraft can fill a critical gap in atmospheric observations by gathering accurate data throughout the global atmosphere, he adds.

Mounted flush on the outside of the plane, Fleming’s sampler channels air into the measurement cell housed in a casing the size of a cigar box just inside the aircraft shell. The sampler weeds out most ice crystals, particles, rain, and other distractions to improve the sensitivity of the measurement. The laser frequency itself sees only water vapor in the air flow.

UPS has provided wind and temperature data to meteorologists from more than half its air fleet since 1994. In 1997, UPS added water vapor information, expressed as relative humidity, from a first-generation test sensor installed on 30 aircraft. The new second-generation sensors are expected to be far more accurate and reliable, especially at higher altitudes and colder temperatures.

Southwest Airlines will begin flying the system when further government funds are available. The German Weather Service is in the process of certifying the sensor, and Lufthansa will be installing four units on commercial flights later this year. New Zealand, Australia, and South Africa will collaborate with the German Weather Service on an initial purchase of ten units.

The FAA’s Aviation Weather Research Program and NOAA’s Office of Global Programs funded development of the WVSS II. The diode laser cell was designed by Randy May of SpectraSensors, the manufacturer of the product.

Opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of any of UCAR’s sponsors.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu/news/releases/2005/fleming.shtml
http://www.ucar.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>