Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Tech Robot Skin

08.06.2005


Goddard Technologist Proposes Sensitive Skin Covering for Robots


High-Tech Robot Skin: Goddard technologist Vladimir Lumelsky believes the future of robotics lies with the development of a high-tech, sensor-embedded covering that would be able to sense the environment, much like human skin. Credit: Vladimir Lumelsky, NASA GSFC



A ballerina gracefully dances on a small stage. She is followed not by a male partner, but by a robotic arm manipulator that seems to sense her every move. For NASA Goddard technologist Vladimir Lumelsky, the performance shows the future of robotics.

It also demonstrates an advanced technology that Lumelsky hopes to develop as part of the push from NASA’s Goddard Space Flight Center in Greenbelt, Md. to develop niche robotics capabilities critical for carrying out the Vision for Space Exploration.


New Laboratory Under Development

Lumelsky, until recently a professor at the University of Wisconsin-Madison, has begun setting up a laboratory at Goddard to develop a high-tech covering that would enable robots to sense their environment and react to it, much like humans respond when something or someone touches their skin. Such a technology, which he refers to as a "High-Tech Skin," is essential for carrying out the Vision for Space Exploration because the Vision depends heavily on humans and robots working together under a variety of working conditions, many of them highly unstructured, Lumelsky said.

"Robots move well on their own, especially when nothing is in the way," Lumelsky explained. However, change the environment and a different picture emerges. "Robots should be able to react, but today’s robots can’t," he said. "That’s the difference and that’s got to change for exploration."

Touch Sensing Remains Key

Although great headway is being made in the area of computer vision, vision isn’t enough, he said. "Humans can survive without sight, but they can’t survive without tactile sensing. The skin is the biggest organ in our body. It’s nothing more than a huge sensor."

Use of Infrared Sensors

The idea is to develop a "sensitive skin" that technicians could use to cover a robot. This skin will include more than 1,000 infrared sensors that would detect an object, and send the information to the robot’s "brain." The brain would digest the information, apply reasoning and react within milliseconds by directing the robot to move. Future skin prototypes likely will have a higher density of sensors on the skin, which will provide the robots with even greater dexterity.

Challenges Ahead

The flexible plastic modules that will house the skin’s electronics will have to undergo a lot of testing to assure that they’re space qualified and able to withstand radiation and extreme changes in light and temperature, such as those that occur on other planets. In addition, embedding the electronics on a large surface material, or printing the skin like wallpaper, presents another major hurdle. Work also is needed in the area of motion-planning development and intelligence, he added.

Since moving to Goddard, Lumelsky began identifying resources needed to create his laboratory.

The sensitive skin was identified as a key technology to develop at Goddard. It would prove vital in situations where humans and robots work side-by-side in the construction of large telescopes and in the operation of both in-space and extraterrestrial equipment.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>