Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Tech Robot Skin

08.06.2005


Goddard Technologist Proposes Sensitive Skin Covering for Robots


High-Tech Robot Skin: Goddard technologist Vladimir Lumelsky believes the future of robotics lies with the development of a high-tech, sensor-embedded covering that would be able to sense the environment, much like human skin. Credit: Vladimir Lumelsky, NASA GSFC



A ballerina gracefully dances on a small stage. She is followed not by a male partner, but by a robotic arm manipulator that seems to sense her every move. For NASA Goddard technologist Vladimir Lumelsky, the performance shows the future of robotics.

It also demonstrates an advanced technology that Lumelsky hopes to develop as part of the push from NASA’s Goddard Space Flight Center in Greenbelt, Md. to develop niche robotics capabilities critical for carrying out the Vision for Space Exploration.


New Laboratory Under Development

Lumelsky, until recently a professor at the University of Wisconsin-Madison, has begun setting up a laboratory at Goddard to develop a high-tech covering that would enable robots to sense their environment and react to it, much like humans respond when something or someone touches their skin. Such a technology, which he refers to as a "High-Tech Skin," is essential for carrying out the Vision for Space Exploration because the Vision depends heavily on humans and robots working together under a variety of working conditions, many of them highly unstructured, Lumelsky said.

"Robots move well on their own, especially when nothing is in the way," Lumelsky explained. However, change the environment and a different picture emerges. "Robots should be able to react, but today’s robots can’t," he said. "That’s the difference and that’s got to change for exploration."

Touch Sensing Remains Key

Although great headway is being made in the area of computer vision, vision isn’t enough, he said. "Humans can survive without sight, but they can’t survive without tactile sensing. The skin is the biggest organ in our body. It’s nothing more than a huge sensor."

Use of Infrared Sensors

The idea is to develop a "sensitive skin" that technicians could use to cover a robot. This skin will include more than 1,000 infrared sensors that would detect an object, and send the information to the robot’s "brain." The brain would digest the information, apply reasoning and react within milliseconds by directing the robot to move. Future skin prototypes likely will have a higher density of sensors on the skin, which will provide the robots with even greater dexterity.

Challenges Ahead

The flexible plastic modules that will house the skin’s electronics will have to undergo a lot of testing to assure that they’re space qualified and able to withstand radiation and extreme changes in light and temperature, such as those that occur on other planets. In addition, embedding the electronics on a large surface material, or printing the skin like wallpaper, presents another major hurdle. Work also is needed in the area of motion-planning development and intelligence, he added.

Since moving to Goddard, Lumelsky began identifying resources needed to create his laboratory.

The sensitive skin was identified as a key technology to develop at Goddard. It would prove vital in situations where humans and robots work side-by-side in the construction of large telescopes and in the operation of both in-space and extraterrestrial equipment.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>