Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first technology enables study of ancient bacteria

07.06.2005


Sustainable energy source could solve Bermuda Triangle riddle



Experts at Cardiff University, UK, have designed world-first technology to investigate sustainable energy sources from the ocean bed by isolating ancient high-pressure bacteria from deep sediments.

Scientists and engineers at Cardiff University are investigating bacteria from deep sediments which despite high pressures (greater than 1,000 atmospheres), gradually increasing temperatures (from an icy 2°C to over 100°C), great depth (several kilometres) and age (many millions of years) may contain most of the bacteria on Earth.


Some of these bacteria produce methane that accumulates in "gas hydrates" – a super concentrated methane ice that contains more carbon than all conventional fossil fuels and, therefore, a potentially enormous energy source. However, we know little about gas hydrates as they melt during recovery due to the fall in pressure.

Professor R. John Parkes, of the School of Earth, Ocean and Planetary Sciences at Cardiff University, is leading part of a major European Union project, called HYACINTH which is developing systems to recover gas hydrates and bacteria under high pressure.

He has turned to experts in the University’s Manufacturing Engineering Centre to help create a system that would enable his team to grow, isolate and study these ancient bacteria in the laboratory.

"DNA analysis of deep sediments has shown diverse bacterial populations, including major new types, but we have been unable to culture them and this might be because we have not been able to keep them at the very high pressures which they need to survive," said Professor Parkes.

The Manufacturing Engineering Centre in the School of Engineering has helped design and produce a high-pressure system, which is the first of its kind in the world.

Using titanium and stainless steel alloys, and sapphire windows, the Centre’s experts have built an isolation system, as well as a special cutting chamber to enable scientists to take precise sediment samples and grow bacteria from them at pressures as high as 1,000 atmospheres. A special ram for the system was produced by the Technical University, Berlin.

As well as studying potentially the deepest organisms on Earth this research might also throw light on the mystery of the Bermuda Triangle by finding out more about the behaviour of the mysterious hydrates.

One theory now suggests that when the covering of "methane ice" which exists over much of the seabed of the Bermuda Triangle becomes unstable; this causes instability of the sea and an explosive mixture of air and methane above. Any ships or planes travelling over the area could sink or catch fire.

"So ancient, deep-sediment bacteria may be a key to sustainable energy in the future and to explaining a few disasters," said Professor Parkes.

Prof. R.John Parkes | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>