Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first technology enables study of ancient bacteria

07.06.2005


Sustainable energy source could solve Bermuda Triangle riddle



Experts at Cardiff University, UK, have designed world-first technology to investigate sustainable energy sources from the ocean bed by isolating ancient high-pressure bacteria from deep sediments.

Scientists and engineers at Cardiff University are investigating bacteria from deep sediments which despite high pressures (greater than 1,000 atmospheres), gradually increasing temperatures (from an icy 2°C to over 100°C), great depth (several kilometres) and age (many millions of years) may contain most of the bacteria on Earth.


Some of these bacteria produce methane that accumulates in "gas hydrates" – a super concentrated methane ice that contains more carbon than all conventional fossil fuels and, therefore, a potentially enormous energy source. However, we know little about gas hydrates as they melt during recovery due to the fall in pressure.

Professor R. John Parkes, of the School of Earth, Ocean and Planetary Sciences at Cardiff University, is leading part of a major European Union project, called HYACINTH which is developing systems to recover gas hydrates and bacteria under high pressure.

He has turned to experts in the University’s Manufacturing Engineering Centre to help create a system that would enable his team to grow, isolate and study these ancient bacteria in the laboratory.

"DNA analysis of deep sediments has shown diverse bacterial populations, including major new types, but we have been unable to culture them and this might be because we have not been able to keep them at the very high pressures which they need to survive," said Professor Parkes.

The Manufacturing Engineering Centre in the School of Engineering has helped design and produce a high-pressure system, which is the first of its kind in the world.

Using titanium and stainless steel alloys, and sapphire windows, the Centre’s experts have built an isolation system, as well as a special cutting chamber to enable scientists to take precise sediment samples and grow bacteria from them at pressures as high as 1,000 atmospheres. A special ram for the system was produced by the Technical University, Berlin.

As well as studying potentially the deepest organisms on Earth this research might also throw light on the mystery of the Bermuda Triangle by finding out more about the behaviour of the mysterious hydrates.

One theory now suggests that when the covering of "methane ice" which exists over much of the seabed of the Bermuda Triangle becomes unstable; this causes instability of the sea and an explosive mixture of air and methane above. Any ships or planes travelling over the area could sink or catch fire.

"So ancient, deep-sediment bacteria may be a key to sustainable energy in the future and to explaining a few disasters," said Professor Parkes.

Prof. R.John Parkes | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>