Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first technology enables study of ancient bacteria

07.06.2005


Sustainable energy source could solve Bermuda Triangle riddle



Experts at Cardiff University, UK, have designed world-first technology to investigate sustainable energy sources from the ocean bed by isolating ancient high-pressure bacteria from deep sediments.

Scientists and engineers at Cardiff University are investigating bacteria from deep sediments which despite high pressures (greater than 1,000 atmospheres), gradually increasing temperatures (from an icy 2°C to over 100°C), great depth (several kilometres) and age (many millions of years) may contain most of the bacteria on Earth.


Some of these bacteria produce methane that accumulates in "gas hydrates" – a super concentrated methane ice that contains more carbon than all conventional fossil fuels and, therefore, a potentially enormous energy source. However, we know little about gas hydrates as they melt during recovery due to the fall in pressure.

Professor R. John Parkes, of the School of Earth, Ocean and Planetary Sciences at Cardiff University, is leading part of a major European Union project, called HYACINTH which is developing systems to recover gas hydrates and bacteria under high pressure.

He has turned to experts in the University’s Manufacturing Engineering Centre to help create a system that would enable his team to grow, isolate and study these ancient bacteria in the laboratory.

"DNA analysis of deep sediments has shown diverse bacterial populations, including major new types, but we have been unable to culture them and this might be because we have not been able to keep them at the very high pressures which they need to survive," said Professor Parkes.

The Manufacturing Engineering Centre in the School of Engineering has helped design and produce a high-pressure system, which is the first of its kind in the world.

Using titanium and stainless steel alloys, and sapphire windows, the Centre’s experts have built an isolation system, as well as a special cutting chamber to enable scientists to take precise sediment samples and grow bacteria from them at pressures as high as 1,000 atmospheres. A special ram for the system was produced by the Technical University, Berlin.

As well as studying potentially the deepest organisms on Earth this research might also throw light on the mystery of the Bermuda Triangle by finding out more about the behaviour of the mysterious hydrates.

One theory now suggests that when the covering of "methane ice" which exists over much of the seabed of the Bermuda Triangle becomes unstable; this causes instability of the sea and an explosive mixture of air and methane above. Any ships or planes travelling over the area could sink or catch fire.

"So ancient, deep-sediment bacteria may be a key to sustainable energy in the future and to explaining a few disasters," said Professor Parkes.

Prof. R.John Parkes | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>