Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique aids nano-electronic manufacturing

03.06.2005


In the time it takes to read this sentence, your fingernail will have grown one nanometer. That’s one-billionth of a meter and it represents the scale at which electronics must be built if the march toward miniaturization is to continue.


Reporting in the June 3 issue of the Journal Science, an international team of researchers shows how control over materials on this tiny scale can be extended to create complex patterns important in the production of nano-electronics.

About two years ago, a team led by University of Wisconsin-Madison Chemical and Biological Engineering Professor Paul Nealey, demonstrated a lithographic technique for creating patterns in the chemistry of polymeric materials used as templates for nano-manufacturing. They deposited a film of block copolymers on a chemically patterned surface such that the molecules arranged themselves to replicate the underlying pattern without imperfections.

That technique works well for creating templates that are neatly ordered in periodic arrays, explains Nealey, who directs the NSF-funded Nanoscale Science and Engineering Center. "But one of the challenges of nanofabrication is integrating these self-assembling materials, that naturally form periodic structures, into existing manufacturing strategies," he says.



Adds Nealey: "Engineers create microelectronics under free-form design principles. Not everything fits neatly into an array. This new technique directs the assembly of blends of block copolymers and homopolymers on chemically nano-patterned substrates. The result is the creation of structures with non-regular geometries. We’ve now potentially harnessed the fine control over structure dimensions, afforded by self-assembling materials, to allow for the production of complex nano-electronic devices."

That kind of control is critical if computer architects are to continue advancing by Moore’s Law. In 1965, Gordon Moore noted the exponential growth in the number of transistors per integrated circuit and predicted the trend would continue. It has. About every 18 months, the number of transistors in computer chips doubles. By decreasing the size of these components and, consequently, fitting more of them onto a single chip, computer speed and power improves. But before long, existing technology will run out of room.

Current manufacturing processes employing chemically amplified lithography techniques achieve dimensions as small as 50 to 70 nanometers, but that technology might not be extendable as feature dimensions shrink below 30 nanometers.

By merging the latest principles of lithography and self-assembly block-copolymer techniques, researchers at UW-Madison and the Paul Scherrer Institute in Switzerland developed a hybrid approach that maximizes the benefits and minimizes the limitations of each approach to nano-manufacturing.

"These new self-assembly materials used in conjunction with the most advanced exposure tools may enable the extension of current manufacturing practices to dimensions of 10 nanometers and less," says Chemical and Biological Engineering graduate student and co-author Mark Stoykovich.

Paul Nealey | EurekAlert!
Further information:
http://www.engr.wisc.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>