Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green diesel: New process makes liquid transportation fuel from plants

03.06.2005


University of Wisconsin-Madison College of Engineering researchers have discovered a new way to make a diesel-like liquid fuel from carbohydrates commonly found in plants.

Reporting in the June 3 issue of the Journal Science, Steenbock Professor James Dumesic and colleagues detail a four-phase catalytic reactor in which corn and other biomass-derived carbohydrates can be converted to sulfur-free liquid alkanes resulting in an ideal additive for diesel transportation fuel. Co-researchers include chemical and biological engineering graduate students George Huber, Juben Chheda and Chris Barrett.

"It’s a very efficient process," says Huber. "The fuel produced contains 90 percent of the energy found in the carbohydrate and hydrogen feed. If you look at a carbohydrate source such as corn, our new process has the potential to create twice the energy as is created in using corn to make ethanol."



About 67 percent of the energy required to make ethanol is consumed in fermenting and distilling corn. As a result, ethanol production creates 1.1 units of energy for every unit of energy consumed. In the UW-Madison process, the desired alkanes spontaneously separate from water. No additional heating or distillation is required. The result is the creation of 2.2 units of energy for every unit of energy consumed in energy production.

"The fuel we’re making stores a considerable amount of hydrogen," says Dumesic. "Each molecule of hydrogen is used to convert each carbon atom in the carbohydrate reactant to an alkane. It’s a very high yield. We don’t lose a lot of carbon. The carbon acts as an effective energy carrier for transportation vehicles. It’s not unlike the way our own bodies use carbohydrates to store energy."

About 75 percent of the dry weight of herbaceous and woody biomass is comprised of carbohydrates. Because the UW-Madison process works with a range of carbohydrates, a wide range of plants, and more parts of the plant, can be consumed to make fuel.

"The current delivered cost of biomass is comparable or even cheaper than petroleum-based feedstock on an energy basis," Huber says.

"This is one step in figuring out how to efficiently use our biomass resources."

James Dumesic | EurekAlert!
Further information:
http://www.engr.wisc.edu

More articles from Power and Electrical Engineering:

nachricht Heavy metals in water meet their match
28.07.2017 | Swansea University

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>