Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers develop low-cost, highly sensitive underwater listening device

23.05.2005


Ocean-going acoustic sensor array to aid in national security, ocean research efforts



Jason Holmes, a mechanical engineering graduate student at Boston University and guest researcher at Woods Hole Oceanographic Institute, has devised a low-cost, highly sensitive array of underwater ears that is perking up interest in both homeland security and ocean research circles. Holmes’ device -- an underwater hydrophone array designed to be towed by a small, autonomous submarine -- can monitor for ocean-going threats to America’s waterways or for sound for ocean acoustics studies.

Holmes will present research on his underwater listening device in Vancouver on May 20 at the semi-annual meeting of the Acoustical Society of America.


The array combines sophisticated engineering with off-the-shelf hardware to create a relatively inexpensive but highly sensitive underwater listening device. The prototype comprises six underwater microphones, or hydrophones, spaced inside a 30-foot plastic tube filled with mineral oil. The array tube is filled with mineral oil to create neutral buoyancy, allowing the array to float behind the underwater towing vehicle.

Signals from the hydrophones are captured and stored on mini-disc recorders aboard the unpiloted submarine, which is called Remus. Designed by Woods Hole Oceanographic Institution, Remus looks like a small torpedo and can navigate autonomously underwater around obstacles and through harbors using GPS sensors, sonar, and electronic maps.

Listening arrays typically used by the military and ocean scientists are towed behind ships and are very long, the shortest being around 1,500 feet long, and are several inches in diameter. At 30 feet in length and 1.1 inches in diameter, the extremely compact prototype can easily be towed through the water by a small, quiet, battery-powered craft. The compact size of the towing sub and array make it easy for one or two people to launch the system, compared to the fully crewed ships required for conventional hydrophone systems.

Holmes originally developed the array to help him study how sound waves travel through shallow water, where sound is refracted by the bottom. Until recently, most acoustic ocean studies have been conducted in deep water, where the bottom has little effect on sound. Holmes constructed the hydrophone system to tackle the problem of how sound waves behave in shallow water, but the U.S. Navy saw the device as a potential security tool, one that is vastly less expensive than the multi-million dollar listening arrays currently in use. Parts for Holmes’ array cost a mere $4,000 and are available as off-the-shelf technology.

Holmes is now working with the military to further develop the array for underwater intelligence gathering. Holmes says his next project will comprise four underwater hydrophone arrays towed by a fleet of unpiloted subs that could travel up to 4 kilometers per trip. Holmes and his faculty advisor William Carey, a professor of aerospace and mechanical engineering in BU’s College of Engineering, say they envision a fleet of entirely autonomous listening subs will prowl the seas, returning to underwater recharging stations to upload their data and refresh their batteries.

"A lot of people were skeptical this would even work," Carey says. "But the way Jason has designed this array, this will change the way ocean measurements are made."

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Power and Electrical Engineering:

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

nachricht A water-based, rechargeable battery
09.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>