Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers develop low-cost, highly sensitive underwater listening device

23.05.2005


Ocean-going acoustic sensor array to aid in national security, ocean research efforts



Jason Holmes, a mechanical engineering graduate student at Boston University and guest researcher at Woods Hole Oceanographic Institute, has devised a low-cost, highly sensitive array of underwater ears that is perking up interest in both homeland security and ocean research circles. Holmes’ device -- an underwater hydrophone array designed to be towed by a small, autonomous submarine -- can monitor for ocean-going threats to America’s waterways or for sound for ocean acoustics studies.

Holmes will present research on his underwater listening device in Vancouver on May 20 at the semi-annual meeting of the Acoustical Society of America.


The array combines sophisticated engineering with off-the-shelf hardware to create a relatively inexpensive but highly sensitive underwater listening device. The prototype comprises six underwater microphones, or hydrophones, spaced inside a 30-foot plastic tube filled with mineral oil. The array tube is filled with mineral oil to create neutral buoyancy, allowing the array to float behind the underwater towing vehicle.

Signals from the hydrophones are captured and stored on mini-disc recorders aboard the unpiloted submarine, which is called Remus. Designed by Woods Hole Oceanographic Institution, Remus looks like a small torpedo and can navigate autonomously underwater around obstacles and through harbors using GPS sensors, sonar, and electronic maps.

Listening arrays typically used by the military and ocean scientists are towed behind ships and are very long, the shortest being around 1,500 feet long, and are several inches in diameter. At 30 feet in length and 1.1 inches in diameter, the extremely compact prototype can easily be towed through the water by a small, quiet, battery-powered craft. The compact size of the towing sub and array make it easy for one or two people to launch the system, compared to the fully crewed ships required for conventional hydrophone systems.

Holmes originally developed the array to help him study how sound waves travel through shallow water, where sound is refracted by the bottom. Until recently, most acoustic ocean studies have been conducted in deep water, where the bottom has little effect on sound. Holmes constructed the hydrophone system to tackle the problem of how sound waves behave in shallow water, but the U.S. Navy saw the device as a potential security tool, one that is vastly less expensive than the multi-million dollar listening arrays currently in use. Parts for Holmes’ array cost a mere $4,000 and are available as off-the-shelf technology.

Holmes is now working with the military to further develop the array for underwater intelligence gathering. Holmes says his next project will comprise four underwater hydrophone arrays towed by a fleet of unpiloted subs that could travel up to 4 kilometers per trip. Holmes and his faculty advisor William Carey, a professor of aerospace and mechanical engineering in BU’s College of Engineering, say they envision a fleet of entirely autonomous listening subs will prowl the seas, returning to underwater recharging stations to upload their data and refresh their batteries.

"A lot of people were skeptical this would even work," Carey says. "But the way Jason has designed this array, this will change the way ocean measurements are made."

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Power and Electrical Engineering:

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

nachricht Air pollution casts shadow over solar energy production
27.06.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>