Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the big step from electronics to photonics by modulating a beam of light with electricity

20.05.2005


Much of our electronics could soon be replaced by photonics, in which beams of light flitting through microscopic channels on a silicon chip replace electrons in wires. Photonic chips would carry more data, use less power and work smoothly with fiber-optic communications systems. The trick is to get electronics and photonics to talk to each other.Now Cornell University researchers have taken a major step forward in bridging this communication gap by developing a silicon device that allows an electrical signal to modulate a beam of light on a micrometer scale.


Cornell Nanophotonics Group - Scanning electron microscope image of the ring coupled to the waveguide with a zoom-in picture of the coupling region. Copyright © Cornell University


Cornell Nanophotonics Group - Schematic layout of the ring resonator based modulator. The inset shows a cross-section of the ring. Copyright © Cornell University



Other electro-optical modulators have been built on silicon, but their size is on the order of millimeters, too large for practical use in integrated circuit chips. (a micrometer, or micron, is one millionth of a meter, or one thousandth of a millimeter.) Smaller modulators have been made using compound semiconductors such as gallium arsenide, but silicon is preferable for its ability to be integrated with current microelectronics.

The work is described in a paper published in the May 19, 2005, issue of Nature by Michal Lipson, Cornell assistant professor of electrical and computer engineering, and her research group.


Their modulator uses a ring resonator -- a circular waveguide coupled to a straight waveguide carrying the beam of light to be modulated. Light traveling along the straight waveguide loops many times around the circle before proceeding. The diameter of the circle, an exact multiple of a particular wavelength, determines the wavelength of light permitted to pass. For the experiments reported in Nature, the ring used was 12 microns in diameter to resonate with laser light at a wavelength of 1,576 nanometers, in the near infrared.

The ring is surrounded by an outer ring of negatively doped silicon, and the region inside the ring is positively doped, making the waveguide itself the intrinsic region of a positive-intrinsic-negative (PIN) diode. When a voltage is applied across the junction, electrons and holes are injected into the waveguide, changing its refractive index and its resonant frequency so that it no longer passes light at the same wavelength. As a result, turning the voltage on switches the light beam off.

The PIN structure has been used previously to modulate light in silicon using straight waveguides. But because the change in refractive index that can be caused in silicon is quite small, a very long straight waveguide is needed. Since light travels many times around the ring resonator, the small change has a large effect, making it possible to build a very small device.

In tests, the researchers found that the device could completely interrupt the propagation of light with an applied voltage of less than 0.3 volts. The researchers note in their paper that devices using a PIN configuration have been relatively slow in switching but that the ring resonator configuration also eliminates this problem. Tests using a pulse-modulated electrical signal produced an output with a very similar waveform to the input at up to 1.5 gigabits per second.

The Nature paper is titled "Micrometer-scale Silicon Electro-Optic Modulator." Co-authors are Cornell graduate students Qianfan Xu and Bradley Schmidt and postdoctoral researcher Sameer Pradhan, now at Intel Corp.

Bill Steele | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>