Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST method improves timing in oscilloscopes


A new method for correcting common timing errors in high-speed oscilloscopes has been developed by researchers at the National Institute of Standards and Technology (NIST). The method improves the accuracy and clarity of measurements performed in the development and troubleshooting of components for wireless and optical communications, military radar and other technologies.

Oscilloscopes display graphical representations of electrical and optical signals as waves, showing how the signals change over time. These instruments often have inaccurate internal clocks that distort output patterns, and they also can exhibit random timing errors called jitter. These errors may lead, for example, to false detection of failure in a communications module that is actually working, or to increased electronic "noise" interference with measurements of microwave signals from radar.

The NIST method, based on an approach developed in laboratory experiments and implemented in freely available software, constructs an alternative time base. The software analyzes an oscilloscope’s measurements of both a signal of interest and two reference waves that are offset from each other. The reference waves are generated by an external device and are synchronized in time with the signal being measured. Measurements of the reference waves are compared with a calculation of an ideal wave to produce an estimate of total time errors due to distortion and jitter. These errors then can be corrected automatically for each measurement made by the oscilloscope.

The NIST correction method can be applied to older standard equipment, can correct time records of almost any length and can be applied to electromagnetic signals of almost any frequency. It also provides the user with an estimate of the residual timing error after the correction process has been completed. The Timebase Correction software package is available free of charge at

Laura Ost | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>