Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST method improves timing in oscilloscopes

20.05.2005


A new method for correcting common timing errors in high-speed oscilloscopes has been developed by researchers at the National Institute of Standards and Technology (NIST). The method improves the accuracy and clarity of measurements performed in the development and troubleshooting of components for wireless and optical communications, military radar and other technologies.



Oscilloscopes display graphical representations of electrical and optical signals as waves, showing how the signals change over time. These instruments often have inaccurate internal clocks that distort output patterns, and they also can exhibit random timing errors called jitter. These errors may lead, for example, to false detection of failure in a communications module that is actually working, or to increased electronic "noise" interference with measurements of microwave signals from radar.

The NIST method, based on an approach developed in laboratory experiments and implemented in freely available software, constructs an alternative time base. The software analyzes an oscilloscope’s measurements of both a signal of interest and two reference waves that are offset from each other. The reference waves are generated by an external device and are synchronized in time with the signal being measured. Measurements of the reference waves are compared with a calculation of an ideal wave to produce an estimate of total time errors due to distortion and jitter. These errors then can be corrected automatically for each measurement made by the oscilloscope.


The NIST correction method can be applied to older standard equipment, can correct time records of almost any length and can be applied to electromagnetic signals of almost any frequency. It also provides the user with an estimate of the residual timing error after the correction process has been completed. The Timebase Correction software package is available free of charge at www.boulder.nist.gov/div815/HSM_Project/Software.htm.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

nachricht A water-based, rechargeable battery
09.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>