Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST method improves timing in oscilloscopes

20.05.2005


A new method for correcting common timing errors in high-speed oscilloscopes has been developed by researchers at the National Institute of Standards and Technology (NIST). The method improves the accuracy and clarity of measurements performed in the development and troubleshooting of components for wireless and optical communications, military radar and other technologies.



Oscilloscopes display graphical representations of electrical and optical signals as waves, showing how the signals change over time. These instruments often have inaccurate internal clocks that distort output patterns, and they also can exhibit random timing errors called jitter. These errors may lead, for example, to false detection of failure in a communications module that is actually working, or to increased electronic "noise" interference with measurements of microwave signals from radar.

The NIST method, based on an approach developed in laboratory experiments and implemented in freely available software, constructs an alternative time base. The software analyzes an oscilloscope’s measurements of both a signal of interest and two reference waves that are offset from each other. The reference waves are generated by an external device and are synchronized in time with the signal being measured. Measurements of the reference waves are compared with a calculation of an ideal wave to produce an estimate of total time errors due to distortion and jitter. These errors then can be corrected automatically for each measurement made by the oscilloscope.


The NIST correction method can be applied to older standard equipment, can correct time records of almost any length and can be applied to electromagnetic signals of almost any frequency. It also provides the user with an estimate of the residual timing error after the correction process has been completed. The Timebase Correction software package is available free of charge at www.boulder.nist.gov/div815/HSM_Project/Software.htm.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>