Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible tactile sensors could help robots work better

20.05.2005


A robot’s sensitivity to touch could be vastly improved by an array of polymer-based tactile sensors that has been combined with a robust signal-processing algorithm to classify surface textures. The work, performed by a team of researchers at the University of Illinois at Urbana-Champaign, is an essential step in the development of robots that can identify and manipulate objects in unstructured environments.



"We are developing artificial tactile sensors that will imitate the functionality and efficiency found in biological structures such as human fingers," said Chang Liu, a professor of electrical and computer engineering at Illinois. "We have shown that simple, low-cost sensor arrays can be used to analyze and identify surface textures."

Biological sensors provide a wealth of information concerning the shape, hardness and texture of an object. Robots, which typically possess a single pressure sensor in their grip, can’t determine whether an object is hard or soft, or how hard it is squeezing an object.


"One of the unsolved problems in robotics is the handling of delicate objects such as eggs," said Douglas Jones, a professor of electrical and computer engineering. "The distributed sensing we have in our hands allows us to grab an egg with enough force that it won’t slip, but without so much force that it breaks. One of our goals is to develop an array of sensors that provides robotic systems with a similar source of tactile feedback."

The research team consisted of Liu and Jones (who are also researchers at the Beckman Institute for Advanced Science and Technology), and graduate students Jonathan Engel and Sung-Hoon Kim. They describe the construction and operation of their tactile sensory array in the May issue of the Journal of Micromechanics and Microengineering, published by the Institute of Physics (http://www.iop.org/EJ/journal/JMM).

The sensors are fabricated from an inexpensive polymer sheet using photolithographic patterning techniques. In the reported work, the researchers created a 4 x 4 array (16 sensors) and evaluated its performance.

"Each sensor resembles a little drum head about 200 microns in diameter with a tiny bump in the center," Engel said. "On the surface of the drum head, we deposit a thin-metal strain gauge that changes resistance when stretched. Pressure on the sensor is converted into digital data that is sent to a computer and analyzed with a signal-processing algorithm."

In any detection problem, implementation is a key issue. "Speed is important, but complex tasks like tactile sensing tend to be very time consuming," Kim said. "We came up with advanced algorithms that make the process more computationally efficient. Our algorithms can quickly determine which sensors are activated in the array, and whether the object is flat, or shaped like a box or the letter X."

In future work, the researchers want to improve efficiency by further simplifying the signal-processing algorithm so it can be performed by circuitry mounted on the same substrate as the sensor. They also want to build larger arrays with distributed sensors, and develop more effective ways to import and utilize sensory data.

Such improvements could expand the functionality of robots in assembly-line environments and facilitate the development of autonomous vehicles.

"Our ultimate goal is to allow robots to operate in unstructured environments," Liu said. "To build more trust between humans and robots, we must make reliable sensor systems that can analyze their physical surroundings quickly and accurately. Our work is a step toward making trustworthy sensors that give robotics the power to really help people."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>