Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mathematical model better describes transistor behavior

11.05.2005


Penn State and Philips researchers have merged the best features of their respective approaches to produce a new mathematical model that describes the behavior of the MOS transistor in a wide class of integrated circuits found in the majority of electronic devices from computers to digital watches to communications systems.



Certain circuits can only be simulated accurately using the new approach, known as the PSP model, including passive mixers used in mobile phones to increase battery life and current-ratio based circuits used in analog to digital converters.

In addition, PSP has better RF capabilities than the existing models and accurately predicts transistor behavior up to frequencies well above 50 GHz.


Dr. Gennady Gildenblat, professor of electrical engineering, leads PSP development at Penn State. He says, "Fabricating integrated circuits is expensive and improving them by trial and error adds significantly to that expense. Accurate models that provide detailed mathematical descriptions offer engineers the chance to do science-based engineering and to get it right the first time." Gildenblat will detail PSP in an invited talk, "Introduction to PSP MOSFET Model," at the Nanotech 2005 International Conference, May 10, in Anaheim, Ca. His co-authors are X. Li, H. Wang and W. Wu, electrical engineering graduate students at Penn State, and R. van Langevelde, A. J. Scholten, G. D. J. Smit and D. B. M. Klaassen, Philips Research Laboratories, The Netherlands.

The key variable in the PSP model is surface potential at the interface between the silicon and silicon dioxide in the transistor. Since PSP is based on this physical variable, it yields better predictions of the behavior of integrated circuits than is possible with alternative models, especially when devices are miniaturized or are operated at their limits, the developers say.

Models, such as PSP, which describe transistors in a mathematical way, are used in circuit simulators. For example, PSP has been tested on a simulation of a passive mixer, a surprisingly difficult problem that Gildenblat and others only accomplished recently. In addition, PSP has been verified against measurements on transistors from various manufacturers, including those made with the latest technology.

All details of the PSP model are being made available on the Internet. Philips SIMKit software allows PSP to be directly coupled to many popular circuit simulators.

Speaking of the Penn State/Philips collaboration, Dr. Dirk Klaassen, research fellow at Philips Research, says, "Our cooperation brings together the best fundamental academic and pragmatic industrial knowledge and expertise on compact modeling. It directly ties our combined deep understanding of the physical behavior of MOS transistors onto the requirements set by IC designers and the application areas most relevant to them."

PSP is being submitted to the Compact Model Council (CMC) as a candidate for standardization. The Council represents 27 major semiconductor companies that use models. The Council chooses candidates for standardization based on the technical needs of its members. The CMC is scheduled to select a new model for CMOS transistors later this year.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>