Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Continuous electricity cable monitoring now a reality: Greater reliability at reduced cost

10.05.2005


In collaboration with KEMA, two postgraduate students from Eindhoven University of Technology have developed a device that continuously monitors cables to localize weak points in distribution networks. Data on weak point development and location enables an electricity company to pre-empt problems by timely intervention. This in turn enhances network reliability and reduces costs. With their invention, Jeroen Veen and Peter van der Wielen received in April their doctorate degree at the Eindhoven University of Technology.



Continuous monitoring

Most power network faults are down to defective distribution cables. Electricity companies therefore try to identify weak spots in cables and replace them before short circuits occur. At present, this is done by carrying out periodic checks on critical cables during maintenance shutdowns. As well as being time-consuming and expensive, this process is far from entirely reliable. In the future, however, electricity companies will be able to cheaply and continuously monitor the quality of vital cables while they remain in use, thanks to research undertaken by Jeroen Veen and Peter van der Wielen. The postgraduate duo has developed a working prototype that has now been adopted by a manufacturer.


Short-circuit

As a power cable ages, its insulation is liable to degrade. If the problem isn’t detected in time, this can result in a short circuit fault. At the points where the insulation has deteriorated most, high-frequency electrical discharges occur. These discharges generate current impulses, which travel along the cable and can be detected at the terminals. The new measuring system consists of two specially developed sensors, one at each end of the cable, which register the impulses. Data from the sensors is transmitted via a telephone line to a central server. The server analyses the data to determine whereabouts along the cable the problems are.

Arrival time

Problems are localized by working out the difference in time taken for an impulse from a fault to reach each of the sensors. The Eindhoven-based researchers have come up with a patented method for synchronization of the measurement signals. This means that the lag in impulse arrival times can be accurately determined and the fault localized. Not only is the new technique smart and cheap, it is also unique, because it is the only option so far developed for monitoring cables while they are in use. Testing of the prototype has yielded highly promising results. A deliberately induced fault in a three-hundred-meter cable was localized to within half a meter. The expectation is that the commercial system will be suitable for monitoring cables up to four kilometers long.

Xavier Theunissen | alfa
Further information:
http://www.tue.nl/pers/site/index.html

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>