Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Continuous electricity cable monitoring now a reality: Greater reliability at reduced cost

10.05.2005


In collaboration with KEMA, two postgraduate students from Eindhoven University of Technology have developed a device that continuously monitors cables to localize weak points in distribution networks. Data on weak point development and location enables an electricity company to pre-empt problems by timely intervention. This in turn enhances network reliability and reduces costs. With their invention, Jeroen Veen and Peter van der Wielen received in April their doctorate degree at the Eindhoven University of Technology.



Continuous monitoring

Most power network faults are down to defective distribution cables. Electricity companies therefore try to identify weak spots in cables and replace them before short circuits occur. At present, this is done by carrying out periodic checks on critical cables during maintenance shutdowns. As well as being time-consuming and expensive, this process is far from entirely reliable. In the future, however, electricity companies will be able to cheaply and continuously monitor the quality of vital cables while they remain in use, thanks to research undertaken by Jeroen Veen and Peter van der Wielen. The postgraduate duo has developed a working prototype that has now been adopted by a manufacturer.


Short-circuit

As a power cable ages, its insulation is liable to degrade. If the problem isn’t detected in time, this can result in a short circuit fault. At the points where the insulation has deteriorated most, high-frequency electrical discharges occur. These discharges generate current impulses, which travel along the cable and can be detected at the terminals. The new measuring system consists of two specially developed sensors, one at each end of the cable, which register the impulses. Data from the sensors is transmitted via a telephone line to a central server. The server analyses the data to determine whereabouts along the cable the problems are.

Arrival time

Problems are localized by working out the difference in time taken for an impulse from a fault to reach each of the sensors. The Eindhoven-based researchers have come up with a patented method for synchronization of the measurement signals. This means that the lag in impulse arrival times can be accurately determined and the fault localized. Not only is the new technique smart and cheap, it is also unique, because it is the only option so far developed for monitoring cables while they are in use. Testing of the prototype has yielded highly promising results. A deliberately induced fault in a three-hundred-meter cable was localized to within half a meter. The expectation is that the commercial system will be suitable for monitoring cables up to four kilometers long.

Xavier Theunissen | alfa
Further information:
http://www.tue.nl/pers/site/index.html

More articles from Power and Electrical Engineering:

nachricht Silicon as a new storage material for the batteries of the future
24.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>