Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT Scientists Improve Explosives Detection

27.04.2005


MIT researchers have announced an innovation that could greatly improve explosives detection for military and civilian security applications.



Scientists have developed a new polymer that greatly increases the sensitivity of chemical detection systems for explosives such as TNT (trinitrotoluene). In the April 14 issue of Nature, they describe a polymer that undergoes lasing action at lower operating powers than previously observed, and they demonstrate that the stimulated light emission from the lasing modes of the polymer displays inherently greater sensitivity to explosives vapors.

Professor Tim Swager (chemistry) and Professor Vladimir Bulovic (electrical engineering and computer science) led the team that designed the novel semiconducting organic polymer (SOP) and invented the new chemosensing method. When exposed to ultraviolet light above a threshold intensity, the material undergoes a stimulated emission or a lasing process, manifested by a directed beam of light emanating from the thin SOP film. When TNT is present, it binds to the SOP surface and quenches the beam.


Because the new polymer undergoes stimulated emission at lower thresholds than earlier SOP materials, the intensity of the ultraviolet light needed to start the lasing action (pump power) is reduced by more than tenfold. This lowers the optical damage usually caused to organic molecules under intense illumination in air. By adjusting the pump power to just over the threshold needed for lasing, it is possible to dramatically attenuate the lasing emission with parts-per-billion doses of TNT vapor. The result is a thirtyfold increase in the detection sensitivity when the system is operating near the lasing threshold.

"This amplification method is extremely general," said Swager, who has previously developed a range of polymeric explosives detection systems. "I predict there will be many new fluorescent sensory schemes based on this principle."

Swager and Bulovic’s invention is part of a larger program in sensing technology at MIT’s Institute for Soldier Nanotechnologies (ISN), a research center devoted to improving soldier survivability through nanotechnology. New technologies for explosives sensing could help protect soldiers from improvised explosive devices, one of the greatest threats facing coalition forces in Iraq. Enhancing the sensitivity of these detection systems could increase the distance at which explosives can be identified.

Swager’s previous work in explosives detection systems has been licensed from MIT and commercialized by Nomadics Inc., an Oklahoma-based company working with the ISN. Their Fido explosives detection system, which rivals the detection ability of a trained dog, is currently undergoing tests by the U.S. Army and Marine Corps in Iraq and by the U.S. Air Force for cargo screening operations.

"The ISN has been very helpful in bringing this technology to the attention of senior leaders of the Army and Marine Corps," said Dr. Larry Hancock from Nomadics. "We are very excited by the successes we have had in field demonstrations and we are working hard with the Army, Marine Corps and Air Force to meet their operational needs."

According to Bulovic, the present innovation can greatly increase the sensitivity of the Fido device. "What we have done is add another layer of amplification to the most sensitive TNT sensor available."

Dr. Aimee Rose of Nomadics, a member of the team who made the discovery, predicts it will save many lives, both military and civilian. "To turn a laboratory discovery into a potentially life-saving device has been an extremely gratifying experience," she said. "As a scientist, that is about as good as it gets."

Elisabeth Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>