Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT Scientists Improve Explosives Detection

27.04.2005


MIT researchers have announced an innovation that could greatly improve explosives detection for military and civilian security applications.



Scientists have developed a new polymer that greatly increases the sensitivity of chemical detection systems for explosives such as TNT (trinitrotoluene). In the April 14 issue of Nature, they describe a polymer that undergoes lasing action at lower operating powers than previously observed, and they demonstrate that the stimulated light emission from the lasing modes of the polymer displays inherently greater sensitivity to explosives vapors.

Professor Tim Swager (chemistry) and Professor Vladimir Bulovic (electrical engineering and computer science) led the team that designed the novel semiconducting organic polymer (SOP) and invented the new chemosensing method. When exposed to ultraviolet light above a threshold intensity, the material undergoes a stimulated emission or a lasing process, manifested by a directed beam of light emanating from the thin SOP film. When TNT is present, it binds to the SOP surface and quenches the beam.


Because the new polymer undergoes stimulated emission at lower thresholds than earlier SOP materials, the intensity of the ultraviolet light needed to start the lasing action (pump power) is reduced by more than tenfold. This lowers the optical damage usually caused to organic molecules under intense illumination in air. By adjusting the pump power to just over the threshold needed for lasing, it is possible to dramatically attenuate the lasing emission with parts-per-billion doses of TNT vapor. The result is a thirtyfold increase in the detection sensitivity when the system is operating near the lasing threshold.

"This amplification method is extremely general," said Swager, who has previously developed a range of polymeric explosives detection systems. "I predict there will be many new fluorescent sensory schemes based on this principle."

Swager and Bulovic’s invention is part of a larger program in sensing technology at MIT’s Institute for Soldier Nanotechnologies (ISN), a research center devoted to improving soldier survivability through nanotechnology. New technologies for explosives sensing could help protect soldiers from improvised explosive devices, one of the greatest threats facing coalition forces in Iraq. Enhancing the sensitivity of these detection systems could increase the distance at which explosives can be identified.

Swager’s previous work in explosives detection systems has been licensed from MIT and commercialized by Nomadics Inc., an Oklahoma-based company working with the ISN. Their Fido explosives detection system, which rivals the detection ability of a trained dog, is currently undergoing tests by the U.S. Army and Marine Corps in Iraq and by the U.S. Air Force for cargo screening operations.

"The ISN has been very helpful in bringing this technology to the attention of senior leaders of the Army and Marine Corps," said Dr. Larry Hancock from Nomadics. "We are very excited by the successes we have had in field demonstrations and we are working hard with the Army, Marine Corps and Air Force to meet their operational needs."

According to Bulovic, the present innovation can greatly increase the sensitivity of the Fido device. "What we have done is add another layer of amplification to the most sensitive TNT sensor available."

Dr. Aimee Rose of Nomadics, a member of the team who made the discovery, predicts it will save many lives, both military and civilian. "To turn a laboratory discovery into a potentially life-saving device has been an extremely gratifying experience," she said. "As a scientist, that is about as good as it gets."

Elisabeth Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>