Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spintronics - breakthroughs for next generation electronics

27.04.2005


Traditional silicon chips in computers and other electronic devices control the flow of electrical current by modifying the positive or negative charge of different parts of each tiny circuit. However it is also possible to use of the mysterious magnetic properties of electrons - know as “spin” - to control the movement of currents. Many large companies have spent millions of dollars trying to solve some of the problems faced by this technology, but progress has remained slow. Discoveries made in Oxford solve several of the most difficult problems and open up this exciting new world of possibilities.



Central to the success of modern electronics is the transistor. A transistor is a switch that controls the flow of electrical current. A modern computer chip contains many millions of tiny transistors; each acting as a tiny switch where a small current is used to control the flow of a larger current.

A spin transistor uses the spin properties of the electrons within it, to control the flow of a current. The big advantage of this approach is that the spin (or magnetic state) of a transistor can be set and then will not change, so unlike a normal electrical circuit that requires a continuous supply of power, a spin transistor remains in the same magnetic state even when power is removed! Producing a spin transistor that can be included in a modern silicon chip is a significant challenge, but scientists at Oxford have developed a spin transistor that works up to 1,000 times better than previous designs making this a real possibility!


There are potential uses for spin transistors all around us. They might be used in computers for data processing, but they can also be used to produce computer memory that is super fast like RAM, but where the data remains in place when the computer is turned off just like a hard disk. This type of memory is known as Magnetic RAM, or MRAM.

MRAM is an exciting opportunity; however even once you have working spin transistors there are other problems that must to be overcome before efficient MRAM can be produced. Ironically, one of the biggest problems is actually reading data from individual components of MRAM memory. The problem might be compared to trying to read a page of small text with a large magnifying glass, where you can only read one character a time and the image is blurry with the characters on either side making it difficult to see the central character clearly.

The time taken to read a page of text this way makes the whole process unworkable, and it is the same with the “reader circuitry” currently used with MRAM. One alternative would be to shrink the magnifying glass down to the size of an individual character, but this would make identifying each character difficult, and in the same way when we try to shrink the reader circuitry for MRAM we find it no longer works!

The second breakthrough discovery made in Oxford solves this problem! It is a new type of reader circuitry that is simple, accurate and works quickly. The value of each component of MRAM can be easily read without any interference from adjacent cells, and the reader circuitry itself can be miniaturised down to the same scale as the individual units of memory. It works like having a line of lenses across a page, each the same size as an individual character, and allowing an entire line of text to be read instantly before moving on to the next one!

These two breakthroughs are protected by a series of patents, including some that are already granted. When combined together they solve many of the problems faced by the emerging area of spintronics, and represent a quantum leap forward in potential levels of performance.

Isis Innovation is the technology transfer company that helps scientists at the University of Oxford take their research out into the real world. They are currently seeking industrial partners who are also excited by this technology, and who have the resources to develop these technologies quickly into world-leading commercial products.

Kim Evans | alfa
Further information:
http://www.isis-innovation.com/licensing/1461.html

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>