Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spintronics - breakthroughs for next generation electronics

27.04.2005


Traditional silicon chips in computers and other electronic devices control the flow of electrical current by modifying the positive or negative charge of different parts of each tiny circuit. However it is also possible to use of the mysterious magnetic properties of electrons - know as “spin” - to control the movement of currents. Many large companies have spent millions of dollars trying to solve some of the problems faced by this technology, but progress has remained slow. Discoveries made in Oxford solve several of the most difficult problems and open up this exciting new world of possibilities.



Central to the success of modern electronics is the transistor. A transistor is a switch that controls the flow of electrical current. A modern computer chip contains many millions of tiny transistors; each acting as a tiny switch where a small current is used to control the flow of a larger current.

A spin transistor uses the spin properties of the electrons within it, to control the flow of a current. The big advantage of this approach is that the spin (or magnetic state) of a transistor can be set and then will not change, so unlike a normal electrical circuit that requires a continuous supply of power, a spin transistor remains in the same magnetic state even when power is removed! Producing a spin transistor that can be included in a modern silicon chip is a significant challenge, but scientists at Oxford have developed a spin transistor that works up to 1,000 times better than previous designs making this a real possibility!


There are potential uses for spin transistors all around us. They might be used in computers for data processing, but they can also be used to produce computer memory that is super fast like RAM, but where the data remains in place when the computer is turned off just like a hard disk. This type of memory is known as Magnetic RAM, or MRAM.

MRAM is an exciting opportunity; however even once you have working spin transistors there are other problems that must to be overcome before efficient MRAM can be produced. Ironically, one of the biggest problems is actually reading data from individual components of MRAM memory. The problem might be compared to trying to read a page of small text with a large magnifying glass, where you can only read one character a time and the image is blurry with the characters on either side making it difficult to see the central character clearly.

The time taken to read a page of text this way makes the whole process unworkable, and it is the same with the “reader circuitry” currently used with MRAM. One alternative would be to shrink the magnifying glass down to the size of an individual character, but this would make identifying each character difficult, and in the same way when we try to shrink the reader circuitry for MRAM we find it no longer works!

The second breakthrough discovery made in Oxford solves this problem! It is a new type of reader circuitry that is simple, accurate and works quickly. The value of each component of MRAM can be easily read without any interference from adjacent cells, and the reader circuitry itself can be miniaturised down to the same scale as the individual units of memory. It works like having a line of lenses across a page, each the same size as an individual character, and allowing an entire line of text to be read instantly before moving on to the next one!

These two breakthroughs are protected by a series of patents, including some that are already granted. When combined together they solve many of the problems faced by the emerging area of spintronics, and represent a quantum leap forward in potential levels of performance.

Isis Innovation is the technology transfer company that helps scientists at the University of Oxford take their research out into the real world. They are currently seeking industrial partners who are also excited by this technology, and who have the resources to develop these technologies quickly into world-leading commercial products.

Kim Evans | alfa
Further information:
http://www.isis-innovation.com/licensing/1461.html

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>