Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sapphire Stars in Nanotube Support Role

26.04.2005


On crystal surfaces, nanotubes self-guide themselves into dense structures with exciting potential applications as sensors or integrated circuits



USC researchers have found that sapphire surfaces spontaneously arrange carbon nanotubes into useful patterns — but only the right surfaces. Nanotubes are one-atom thick sheets of carbon rolled into seamless cylinders. They can be used to work as chemical sensors and transistors, like devices made from carbon’s close chemical cousin, silicon.

As a substrate for the creation of single wall nanotube transistor (SWNT) devices, sapphire has a critical advantage, says Chongwu Zhou of the USC Viterbi School of Engineering’s department of electrical engineering. Single walled carbon nanotubes will grow along certain crystalline orientations on sapphire. No template has to be provided to guide this structuring: it takes place automatically.


Or more accurately, it sometimes happens automatically. With an elegant experiment, Zhou has resolved how and why this occurs. The process is potentially predictable and controllable, opening the door for systematic exploration of sapphire as a SWNT medium.

In a paper accepted by the Journal of the American Chemical Society (V127, P5294, 2005), Zhou says the understanding "may allow registration-free fabrication and integration of nanotube devices by simply patterning source/ drain electrodes at desired locations, as the active material (i.e., nanotubes) is all over the substrate," to build such devices as sensors and integrated circuits for various uses.

According to Zhou, nanotube transistor devices now have to be painstakingly positioned and aligned using methods such as flow alignment and electrical-field-assisted alignment and then individually connected. Experimental techniques can create some more extensive groups of tubes but "it remains difficult to produce planar nanotube arrays over large areas with sufficiently high density and order," Zhou wrote.

Zhou believes exploitation of the properties of sapphire his team investigated may allow production of the right kinds of dense, ordered arrays necessary.

Sapphire is aluminum oxide, also known as the mineral alumina, the abrasive corundum, and when colored by small quantities of iron, ruby. It is readily available as a cheap synthetic.

The crystal is six-sided, rising from a flat base, (see diagram, right) and has four natural planes on which it can be split to form thin, smooth slices: one parallel to the base, and three other vertical ones.

The self-guiding phenomenon was first reported last year by a research team at the Weizman Institute in Israel: Zhou’s team systematically investigated it.

Certain vertical slices, particularly the a- and r-planes, exhibit the self-guiding nanotube behavior. The c-plane, parallel to the base did not.

According to Zhou, two possibilities might explain the difference. One would be the arrangement of the atoms in the matrix; the other, differences in the "step edge" properties of the surfaces.
Step edges are nanoscopic surface irregularities, minute rises from the suface level.

To eliminate step edges as a possibility, Zhou’s group annealed (treated with high, long-lasting heat) samples of both forms, and then tested. Annealing emphasizes step edges, and would accordingly emphasize the arrangement effect, if the effect was dependent on the edges. It did not.

The basal, horizontal slices remained unable to self-guide nanotubes. The two of the vertical slices continued to do so. The behavior seems to be due to the varied arrangement of aluminum and oxygen atoms on the surface. Zhou’s team is now investigating how the exact mechanisms at work, in order to further control the process.

Zhou and his team have also, worked with quartz substrates for nanotube synthesis, which did not exhibit any guided growth.

Zhou worked with Xiaolei Liu and Song Han on the research, which was supported by an NSF career Award, an NSF-CENS grant, and an SRC MARCO/ DARPA grant.

Eric Mankin | EurekAlert!
Further information:
http://viterbi.usc.edu/news/news/2005/2005_04_13_sapphire.htm
http://www.usc.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>