Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sapphire Stars in Nanotube Support Role

26.04.2005


On crystal surfaces, nanotubes self-guide themselves into dense structures with exciting potential applications as sensors or integrated circuits



USC researchers have found that sapphire surfaces spontaneously arrange carbon nanotubes into useful patterns — but only the right surfaces. Nanotubes are one-atom thick sheets of carbon rolled into seamless cylinders. They can be used to work as chemical sensors and transistors, like devices made from carbon’s close chemical cousin, silicon.

As a substrate for the creation of single wall nanotube transistor (SWNT) devices, sapphire has a critical advantage, says Chongwu Zhou of the USC Viterbi School of Engineering’s department of electrical engineering. Single walled carbon nanotubes will grow along certain crystalline orientations on sapphire. No template has to be provided to guide this structuring: it takes place automatically.


Or more accurately, it sometimes happens automatically. With an elegant experiment, Zhou has resolved how and why this occurs. The process is potentially predictable and controllable, opening the door for systematic exploration of sapphire as a SWNT medium.

In a paper accepted by the Journal of the American Chemical Society (V127, P5294, 2005), Zhou says the understanding "may allow registration-free fabrication and integration of nanotube devices by simply patterning source/ drain electrodes at desired locations, as the active material (i.e., nanotubes) is all over the substrate," to build such devices as sensors and integrated circuits for various uses.

According to Zhou, nanotube transistor devices now have to be painstakingly positioned and aligned using methods such as flow alignment and electrical-field-assisted alignment and then individually connected. Experimental techniques can create some more extensive groups of tubes but "it remains difficult to produce planar nanotube arrays over large areas with sufficiently high density and order," Zhou wrote.

Zhou believes exploitation of the properties of sapphire his team investigated may allow production of the right kinds of dense, ordered arrays necessary.

Sapphire is aluminum oxide, also known as the mineral alumina, the abrasive corundum, and when colored by small quantities of iron, ruby. It is readily available as a cheap synthetic.

The crystal is six-sided, rising from a flat base, (see diagram, right) and has four natural planes on which it can be split to form thin, smooth slices: one parallel to the base, and three other vertical ones.

The self-guiding phenomenon was first reported last year by a research team at the Weizman Institute in Israel: Zhou’s team systematically investigated it.

Certain vertical slices, particularly the a- and r-planes, exhibit the self-guiding nanotube behavior. The c-plane, parallel to the base did not.

According to Zhou, two possibilities might explain the difference. One would be the arrangement of the atoms in the matrix; the other, differences in the "step edge" properties of the surfaces.
Step edges are nanoscopic surface irregularities, minute rises from the suface level.

To eliminate step edges as a possibility, Zhou’s group annealed (treated with high, long-lasting heat) samples of both forms, and then tested. Annealing emphasizes step edges, and would accordingly emphasize the arrangement effect, if the effect was dependent on the edges. It did not.

The basal, horizontal slices remained unable to self-guide nanotubes. The two of the vertical slices continued to do so. The behavior seems to be due to the varied arrangement of aluminum and oxygen atoms on the surface. Zhou’s team is now investigating how the exact mechanisms at work, in order to further control the process.

Zhou and his team have also, worked with quartz substrates for nanotube synthesis, which did not exhibit any guided growth.

Zhou worked with Xiaolei Liu and Song Han on the research, which was supported by an NSF career Award, an NSF-CENS grant, and an SRC MARCO/ DARPA grant.

Eric Mankin | EurekAlert!
Further information:
http://viterbi.usc.edu/news/news/2005/2005_04_13_sapphire.htm
http://www.usc.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>