Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microbial fuel cell: High yield hydrogen source and wastewater cleaner


Using a new electrically-assisted microbial fuel cell (MFC) that does not require oxygen, Penn State environmental engineers and a scientist at Ion Power Inc. have developed the first process that enables bacteria to coax four times as much hydrogen directly out of biomass than can be generated typically by fermentation alone.

Dr. Bruce Logan, the Kappe professor of environmental engineering and an inventor of the MFC, says, "This MFC process is not limited to using only carbohydrate-based biomass for hydrogen production like conventional fermentation processes. We can theoretically use our MFC to obtain high yields of hydrogen from any biodegradable, dissolved, organic matter -- human, agricultural or industrial wastewater, for example -- and simultaneously clean the wastewater.

"While there is likely insufficient waste biomass to sustain a global hydrogen economy, this form of renewable energy production may help offset the substantial costs of wastewater treatment as well as provide a contribution to nations able to harness hydrogen as an energy source," Logan notes,.

The new approach is described in a paper, "Electrochemically Assisted Microbial Production of Hydrogen from Acetate," released online currently and scheduled for a future issue of Environmental Science and Technology. The authors are Dr. Hong Liu, postdoctoral researcher in environmental engineering; Dr. Stephen Grot, president and founder of Ion Power, Inc.; and Logan. Grot, a former Penn State student, suggested the idea of modifying an MFC to generate hydrogen.

In their paper, the researchers explain that hydrogen production by bacterial fermentation is currently limited by the "fermentation barrier" -- the fact that bacteria, without a power boost, can only convert carbohydrates to a limited amount of hydrogen and a mixture of "dead end" fermentation end products such as acetic and butyric acids.

However, giving the bacteria a small assist with a tiny amount of electricity -- about 0.25 volts or a small fraction of the voltage needed to run a typical 6 volt cell phone -- they can leap over the fermentation barrier and convert a "dead end" fermentation product, acetic acid, into carbon dioxide and hydrogen.

Logan notes, "Basically, we use the same microbial fuel cell we developed to clean wastewater and produce electricity. However, to produce hydrogen, we keep oxygen out of the MFC and add a small amount of power into the system."

In the new MFC, when the bacteria eat biomass, they transfer electrons to an anode. The bacteria also release protons, hydrogen atoms stripped of their electrons, which go into solution. The electrons on the anode migrate via a wire to the cathode, the other electrode in the fuel cell, where they are electrochemically assisted to combine with the protons and produce hydrogen gas.

A voltage in the range of 0.25 volts or more is applied to the circuit by connecting the positive pole of a programmable power supply to the anode and the negative pole to the cathode.

The researchers call their hydrogen-producing MFC a BioElectrochemically-Assisted Microbial Reactor or BEAMR. The BEAMR not only produces hydrogen but simultaneously cleans the wastewater used as its feedstock. It uses about one-tenth of the voltage needed for electrolysis, the process that uses electricity to break water down into hydrogen and oxygen.

Logan adds, "This new process demonstrates, for the first time, that there is real potential to capture hydrogen for fuel from renewable sources for clean transportation."

Barbara Hale | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>