Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial fuel cell: High yield hydrogen source and wastewater cleaner

25.04.2005


Using a new electrically-assisted microbial fuel cell (MFC) that does not require oxygen, Penn State environmental engineers and a scientist at Ion Power Inc. have developed the first process that enables bacteria to coax four times as much hydrogen directly out of biomass than can be generated typically by fermentation alone.



Dr. Bruce Logan, the Kappe professor of environmental engineering and an inventor of the MFC, says, "This MFC process is not limited to using only carbohydrate-based biomass for hydrogen production like conventional fermentation processes. We can theoretically use our MFC to obtain high yields of hydrogen from any biodegradable, dissolved, organic matter -- human, agricultural or industrial wastewater, for example -- and simultaneously clean the wastewater.

"While there is likely insufficient waste biomass to sustain a global hydrogen economy, this form of renewable energy production may help offset the substantial costs of wastewater treatment as well as provide a contribution to nations able to harness hydrogen as an energy source," Logan notes,.


The new approach is described in a paper, "Electrochemically Assisted Microbial Production of Hydrogen from Acetate," released online currently and scheduled for a future issue of Environmental Science and Technology. The authors are Dr. Hong Liu, postdoctoral researcher in environmental engineering; Dr. Stephen Grot, president and founder of Ion Power, Inc.; and Logan. Grot, a former Penn State student, suggested the idea of modifying an MFC to generate hydrogen.

In their paper, the researchers explain that hydrogen production by bacterial fermentation is currently limited by the "fermentation barrier" -- the fact that bacteria, without a power boost, can only convert carbohydrates to a limited amount of hydrogen and a mixture of "dead end" fermentation end products such as acetic and butyric acids.

However, giving the bacteria a small assist with a tiny amount of electricity -- about 0.25 volts or a small fraction of the voltage needed to run a typical 6 volt cell phone -- they can leap over the fermentation barrier and convert a "dead end" fermentation product, acetic acid, into carbon dioxide and hydrogen.

Logan notes, "Basically, we use the same microbial fuel cell we developed to clean wastewater and produce electricity. However, to produce hydrogen, we keep oxygen out of the MFC and add a small amount of power into the system."

In the new MFC, when the bacteria eat biomass, they transfer electrons to an anode. The bacteria also release protons, hydrogen atoms stripped of their electrons, which go into solution. The electrons on the anode migrate via a wire to the cathode, the other electrode in the fuel cell, where they are electrochemically assisted to combine with the protons and produce hydrogen gas.

A voltage in the range of 0.25 volts or more is applied to the circuit by connecting the positive pole of a programmable power supply to the anode and the negative pole to the cathode.

The researchers call their hydrogen-producing MFC a BioElectrochemically-Assisted Microbial Reactor or BEAMR. The BEAMR not only produces hydrogen but simultaneously cleans the wastewater used as its feedstock. It uses about one-tenth of the voltage needed for electrolysis, the process that uses electricity to break water down into hydrogen and oxygen.

Logan adds, "This new process demonstrates, for the first time, that there is real potential to capture hydrogen for fuel from renewable sources for clean transportation."

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>