Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth in biomass could put U.S. on road to energy independence

22.04.2005


Relief from soaring prices at the gas pump could come in the form of corncobs, cornstalks, switchgrass and other types of biomass, according to a joint feasibility study for the departments of Agriculture and Energy.



The recently completed Oak Ridge National Laboratory report outlines a national strategy in which 1 billion dry tons of biomass – any organic matter that is available on a renewable or recurring basis – would displace 30 percent of the nation’s petroleum consumption for transportation. Supplying more than 3 percent of the nation’s energy, biomass already has surpassed hydropower as the largest domestic source of renewable energy, and researchers believe much potential remains.

"Our report answers several key questions," said Bob Perlack, a member of ORNL’s Environmental Sciences Division and a co-author of the report. "We wanted to know how large a role biomass could play, whether the United States has the land resources and whether such a plan would be economically viable."


Looking at just forestland and agricultural land, the two largest potential biomass sources, the study found potential exceeding 1.3 billion dry tons per year. That amount is enough to produce biofuels to meet more than one-third of the current demand for transportation fuels, according to the report.

Such an amount, which would represent a six-fold increase in production from the amount of biomass produced today, could be achieved with only relatively modest changes in land use and agricultural and forestry practices.

"One of the main points of the report is that the United States can produce nearly 1 billion dry tons of biomass annually from agricultural lands and still continue to meet food, feed and export demands," said Robin Graham, leader for Ecosystem and Plant Sciences in ORNL’s Environmental Sciences Division.

The benefits of an increased focus on biomass include increased energy security as the U.S. would become less dependent on foreign oil, a potential 10 percent reduction in greenhouse gas emissions and an improved rural economic picture.

Current production of ethanol is about 3.4 billion gallons per year, but that total could reach 80 billion gallons or more under the scenario outlined in this report. Such an increase in ethanol production would see transportation fuels from biomass increase from 0.5 percent of U.S. consumption in 2001 to 4 percent in 2010, 10 percent in 2020 and 20 percent in 2030. In fact, depending on several factors, biomass could supply 15 percent of the nation’s energy by 2030.

Meanwhile, biomass consumption in the industrial sector would increase at an annual rate of 2 percent through 2030, while biomass consumption by electric utilities would double every 10 years through 2030. During the same time, production of chemicals and materials from bio-based products would increase from about 12.5 billion pounds, or 5 percent of the current production of target U.S. chemical commodities in 2001, to 12 percent in 2010, 18 percent in 2020 and 25 percent in 2030.

Nearly half of the 2,263 million acres that comprise the land base of the U.S. has potential for growing biomass. About 33 percent of the land area is classified as forest, 26 percent as grassland, 20 percent as cropland, 13 percent as urban areas, swamps and deserts, and 8 percent as special uses such as public facilities.

The report, titled "Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply," was sponsored by DOE’s Office of Energy Efficiency and Renwable Energy, Office of Biomass Program. Lynn Wright and Anthony Turhollow of ORNL, Bryce Stokes of the USDA Forest Service and Don Erbach of the USDA Agriculture Research Service are co-authors of the report. The complete report is available at: http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf.

Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>