Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Growth in biomass could put U.S. on road to energy independence


Relief from soaring prices at the gas pump could come in the form of corncobs, cornstalks, switchgrass and other types of biomass, according to a joint feasibility study for the departments of Agriculture and Energy.

The recently completed Oak Ridge National Laboratory report outlines a national strategy in which 1 billion dry tons of biomass – any organic matter that is available on a renewable or recurring basis – would displace 30 percent of the nation’s petroleum consumption for transportation. Supplying more than 3 percent of the nation’s energy, biomass already has surpassed hydropower as the largest domestic source of renewable energy, and researchers believe much potential remains.

"Our report answers several key questions," said Bob Perlack, a member of ORNL’s Environmental Sciences Division and a co-author of the report. "We wanted to know how large a role biomass could play, whether the United States has the land resources and whether such a plan would be economically viable."

Looking at just forestland and agricultural land, the two largest potential biomass sources, the study found potential exceeding 1.3 billion dry tons per year. That amount is enough to produce biofuels to meet more than one-third of the current demand for transportation fuels, according to the report.

Such an amount, which would represent a six-fold increase in production from the amount of biomass produced today, could be achieved with only relatively modest changes in land use and agricultural and forestry practices.

"One of the main points of the report is that the United States can produce nearly 1 billion dry tons of biomass annually from agricultural lands and still continue to meet food, feed and export demands," said Robin Graham, leader for Ecosystem and Plant Sciences in ORNL’s Environmental Sciences Division.

The benefits of an increased focus on biomass include increased energy security as the U.S. would become less dependent on foreign oil, a potential 10 percent reduction in greenhouse gas emissions and an improved rural economic picture.

Current production of ethanol is about 3.4 billion gallons per year, but that total could reach 80 billion gallons or more under the scenario outlined in this report. Such an increase in ethanol production would see transportation fuels from biomass increase from 0.5 percent of U.S. consumption in 2001 to 4 percent in 2010, 10 percent in 2020 and 20 percent in 2030. In fact, depending on several factors, biomass could supply 15 percent of the nation’s energy by 2030.

Meanwhile, biomass consumption in the industrial sector would increase at an annual rate of 2 percent through 2030, while biomass consumption by electric utilities would double every 10 years through 2030. During the same time, production of chemicals and materials from bio-based products would increase from about 12.5 billion pounds, or 5 percent of the current production of target U.S. chemical commodities in 2001, to 12 percent in 2010, 18 percent in 2020 and 25 percent in 2030.

Nearly half of the 2,263 million acres that comprise the land base of the U.S. has potential for growing biomass. About 33 percent of the land area is classified as forest, 26 percent as grassland, 20 percent as cropland, 13 percent as urban areas, swamps and deserts, and 8 percent as special uses such as public facilities.

The report, titled "Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply," was sponsored by DOE’s Office of Energy Efficiency and Renwable Energy, Office of Biomass Program. Lynn Wright and Anthony Turhollow of ORNL, Bryce Stokes of the USDA Forest Service and Don Erbach of the USDA Agriculture Research Service are co-authors of the report. The complete report is available at:

Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.

Ron Walli | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>