Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spontaneous ignition discovery has ORNL researcher fired up

20.04.2005


Zhiyu Hu believes it is possible to match nature’s highly efficient method to convert chemicals into thermal energy at room temperature, and he has data and a published paper to support his theory.



In a paper scheduled to appear in the May 18 print issue of the American Chemical Society’s Energy & Fuels, Oak Ridge National Laboratory’s Hu describes a novel method to achieve spontaneous ignition and sustained combustion at room temperature. He achieves this "nano-catalytic reaction" with nothing but nanometer-sized particles of platinum stuck to fibers of glass wool in a small jar with methanol and air – with no source of external ignition.

Although this began as little more than a curiosity, Hu quickly realized that the implications could be significant because of the potential gains in energy conversion and utilization. Hu now cites possibilities in the area of distributed power generation and perhaps military and homeland defense.


While additional research needs to be performed to understand the phenomena, Hu notes that natural organisms such as microbes, plants and animals obtain energy from oxidation of the same organic chemicals at their physiological, or body, temperatures. Many of these biological reactions also use metals as part of their enzyme catalysts. Still, this is a surprising result in the field of metal catalysis.

"Since the caveman days, we have burned things to utilize their energy, and the high temperatures and the entire process have created a lot of problems that we’re then forced to deal with," said Hu, a physicist in the Life Sciences Division of the Department of Energy’s ORNL.

Citing the wisdom of one of the all-time great scientists, Hu noted that Albert Einstein once said, "Problems cannot be solved at the same level of awareness that created them." So, according to Hu, the best way to solve the energy crisis is to replace our existing fuel consuming method with one that has much higher efficiency and less environmental impact.

Indeed, there is room for efficiency improvement, Hu said, noting that an internal combustion engine is only about 21 percent efficient. The process also creates environmental concerns because of nitrogen oxide emissions that form because of the high combustion temperatures. Even an advanced fuel cell is only about 50 percent efficient, and it must be operated at a temperature that is much higher than our body or room temperature, which requires costly components able to withstand harsh conditions.

"What we have is the possibility of retrieving energy at a lower temperature with greater efficiency and lower environmental effects," Hu said.

The method outlined in the paper "Nano-catalytic spontaneous ignition and self-supporting room-temperature combustion," co-written by ORNL’s Vassil Boiadjiev and Thomas Thundat, was discovered unintentionally. Hu was actually conducting another experiment with platinum particles, methanol and cotton swabs when he noticed the mixture produced smoke. He consulted with Thundat and others who encouraged him to figure out what was happening.

"This wasn’t research that was funded, so I worked evenings and weekends to try to understand why and how this happened," Hu said. He replicated the discovery numerous times under different conditions and noticed that the reactions can reach high temperatures of greater than 600 degrees Celsius and low temperatures of just a few tenths of a degree above room temperature.

Hu also learned that he can control the reaction by varying the fuel-air mixture, and he discovered that the process can be dramatically changed by reducing the particle size and changing the particle’s morphology, or shape.

Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>