Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gas sensors patterned with conducting polymer

13.04.2005


An improved method for depositing nanoporous, conducting polymer films on miniaturized device features has been demonstrated by researchers at the National Institute of Standards and Technology (NIST).


These colorized scanning electron micrographs show a portion of the NIST microheater device before (left) and after (right) application of the sponge-like polyaniline coating


Images of two NIST microheater devices, each about 100 micrometers wide. On the left is a microheater coated with a conducting polymer, polyaniline, which is naturally green in color. On the right is an identical microheater with no coating.



Described in the April 6 issue of the Journal of the American Chemical Society,* the method may be useful as a general technique for reproducibly fabricating microdevices such as sensors for detecting toxic chemicals.

Unlike most polymers, conducting polymers have the electrical and optical properties of metals or semiconductors. These materials are of increasing interest in microelectronics because they are inexpensive, flexible and easy to synthesize.


Polyaniline is a particularly promising conducting polymer for microelectronics applications, but it is difficult to process because it doesn’t dissolve in most solvents. NIST researchers have circumvented this problem by dispersing nanoscale particles of polyaniline into a mild solvent.

"The beauty of the method," says NIST guest researcher Guofeng Li, "is that the polyaniline chain carries a natural positive charge." Once the particles are formed, electrostatic repulsion prevents them from clumping together. Moreover, the positively charged particles then can be manipulated and patterned on complex device structures by applying an electrical field.

The process produces a sponge-like coating that efficiently captures gaseous molecules. So far NIST researchers have demonstrated that such coatings can detect the difference between methanol and water vapor. Additional tests will be needed before the polymer devices could be used for detecting toxic gases.

NIST holds patents for previous work using microheaters coated with nanostructured tin oxide films. As the microheaters cycle through a series of temperatures, changes in electrical resistance are used to detect toxic gases at part per billion levels. Ultimately, NIST researchers hope to develop inexpensive arrays of microheater sensors coated with both polymer and inorganic oxide films optimized to identify the components of gas mixtures.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>