Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New sensors that see rubbish and gas


The SINTEF Group, in co-operation with the re-cycling company Tomra now goes beyond cash deposits for bottles and cans to recycling plastic, glass and metal. Newly developed, patented technology makes it possible to sort different types of plastic, different colours of glass as well as metal – easily, effectively and inexpensively. A new, inexpensive gas-detector that contributes to a better indoor climate, is another area of use.

Although many things can be recycled or reused, it is a major challenge to sort this rubbish. It is expensive and complicated, because it’s not easy to see which plastic type makes up the bottle, cup or can. If the plastic is to be reused, different types cannot be mixed. It requires “clean merchandise”!

But a little, gold-covered plastic chip – as easy to produce as a CD – can manage this work. The surface is holographic, reflecting light in a carefully programmed way. With the help of new software that interprets the spectrum of light reflected from or passing through different materials, each material’s “fingerprint” is read very accurately – whether solid material or gas.

“We are now able to produce this chip and associated electronics for well under 1,000 NOK (120 EURO),”explains Tomra research manager Andreas Nordbryhn.

Together with the research group SINTEF (Trondheim),Tomra has achieved the goal that the research and development project (Sensit) started more than two years ago. The results are now commercialised, beginning in two important areas: Rubbish sorting and gas detection. But the technology is suitable in all areas where spectrometry is used. Tomra is developing an entirely new recycling station business area. OptoSense takes advantage of the same technology with sensors that can determine different gasses. Tomra is the patent holder of the new technology that has been developed by SINTEF, but OptoSense and SINTEF have the right to make use of the technology within areas defined in the agreement, such as gas detection, as well as medical and food products. The fourth company that was involved in the project at the start, Titech Visionsort, was acquired by Tomra during the project.

“The project has been remarkably successful,” Nordbryhn states. “We have long wanted to expand our activities to include rubbish handling. The deposit market is limited – for example, only about 15% of all bottles consumed annually around the world have a deposit. And 85% of the bottles and most of the other packaging are only rubbish. All countries have large problems with the handling an enormous mountain of rubbish, not the least of which is packaging that modern society produces. There is close to an unlimited market for solutions to handle the challenge in a rational way. Increasingly, different countries’ authorities are adding fees for those who cannot document that their packaging is recyclable.”

“To be able to develop this new business area you need a sensor that in an easy, inexpensive, robust and reliable way sorts different packaging material– without the user needing to think about what he or she put into the machine. We started more than five years ago, and now we have made it,” states the Tomra researcher.

The first prototype is already mounted at the British supermarket chain Tesco. It is a complete recycling station that sorts and shreds packaging the public inserts. The new, more advanced stations, that are now in production, will be able to separate between seven different types of plastic that will fall into their own containers after being shredded. Glass will be sorted after colour, then broken and disturbed in containers. The same for metal – iron/steel will be sorted from aluminium.

“Because the machine sorts and shreds the packaging material, the need for storage area and transport are reduced. This gives a large environmental gain as well as a better economy. The solution we can now present for the market is the cheapest and best in the world,” Nordbryhn points out.

Furthermore, the company has access to technology that makes it possible to produce an inexpensive, precise gas detector, for, among other things, CO2.

This sensor can, for example, be used to control a ventilation system at the workplace. It sees when CO2 levels in the air are too high – which quickly happens when many people are in the same room – or needlessly low. The sensor can signal the ventilation system to raise or reduce air flow so that is continuously is at the desired level. This ensures a good indoor climate, and at the same time prevents over ventilation. This also means saving energy for heating, cooling and circulating air.

This also prevents the system from using power when it is not necessary, which saves energy. “This is environmental technology,” underlines Trond Melen of OptoSense.

Thomas Evensen | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>