Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensors that see rubbish and gas

12.04.2005


The SINTEF Group, in co-operation with the re-cycling company Tomra now goes beyond cash deposits for bottles and cans to recycling plastic, glass and metal. Newly developed, patented technology makes it possible to sort different types of plastic, different colours of glass as well as metal – easily, effectively and inexpensively. A new, inexpensive gas-detector that contributes to a better indoor climate, is another area of use.

Although many things can be recycled or reused, it is a major challenge to sort this rubbish. It is expensive and complicated, because it’s not easy to see which plastic type makes up the bottle, cup or can. If the plastic is to be reused, different types cannot be mixed. It requires “clean merchandise”!

But a little, gold-covered plastic chip – as easy to produce as a CD – can manage this work. The surface is holographic, reflecting light in a carefully programmed way. With the help of new software that interprets the spectrum of light reflected from or passing through different materials, each material’s “fingerprint” is read very accurately – whether solid material or gas.



“We are now able to produce this chip and associated electronics for well under 1,000 NOK (120 EURO),”explains Tomra research manager Andreas Nordbryhn.

Together with the research group SINTEF (Trondheim),Tomra has achieved the goal that the research and development project (Sensit) started more than two years ago. The results are now commercialised, beginning in two important areas: Rubbish sorting and gas detection. But the technology is suitable in all areas where spectrometry is used. Tomra is developing an entirely new recycling station business area. OptoSense takes advantage of the same technology with sensors that can determine different gasses. Tomra is the patent holder of the new technology that has been developed by SINTEF, but OptoSense and SINTEF have the right to make use of the technology within areas defined in the agreement, such as gas detection, as well as medical and food products. The fourth company that was involved in the project at the start, Titech Visionsort, was acquired by Tomra during the project.

“The project has been remarkably successful,” Nordbryhn states. “We have long wanted to expand our activities to include rubbish handling. The deposit market is limited – for example, only about 15% of all bottles consumed annually around the world have a deposit. And 85% of the bottles and most of the other packaging are only rubbish. All countries have large problems with the handling an enormous mountain of rubbish, not the least of which is packaging that modern society produces. There is close to an unlimited market for solutions to handle the challenge in a rational way. Increasingly, different countries’ authorities are adding fees for those who cannot document that their packaging is recyclable.”

“To be able to develop this new business area you need a sensor that in an easy, inexpensive, robust and reliable way sorts different packaging material– without the user needing to think about what he or she put into the machine. We started more than five years ago, and now we have made it,” states the Tomra researcher.

The first prototype is already mounted at the British supermarket chain Tesco. It is a complete recycling station that sorts and shreds packaging the public inserts. The new, more advanced stations, that are now in production, will be able to separate between seven different types of plastic that will fall into their own containers after being shredded. Glass will be sorted after colour, then broken and disturbed in containers. The same for metal – iron/steel will be sorted from aluminium.

“Because the machine sorts and shreds the packaging material, the need for storage area and transport are reduced. This gives a large environmental gain as well as a better economy. The solution we can now present for the market is the cheapest and best in the world,” Nordbryhn points out.

Furthermore, the company has access to technology that makes it possible to produce an inexpensive, precise gas detector, for, among other things, CO2.

This sensor can, for example, be used to control a ventilation system at the workplace. It sees when CO2 levels in the air are too high – which quickly happens when many people are in the same room – or needlessly low. The sensor can signal the ventilation system to raise or reduce air flow so that is continuously is at the desired level. This ensures a good indoor climate, and at the same time prevents over ventilation. This also means saving energy for heating, cooling and circulating air.

This also prevents the system from using power when it is not necessary, which saves energy. “This is environmental technology,” underlines Trond Melen of OptoSense.

Thomas Evensen | alfa
Further information:
http://www.tomra.no/default.asp?V_DOC_ID=1239
http://www.forskningsradet.no

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>