Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Material Structure Produces World’s Fastest Transistor

12.04.2005


A new type of transistor structure, invented by scientists at the University of Illinois at Urbana-Champaign, has broken the 600 gigahertz speed barrier. The goal of a terahertz transistor for high-speed computing and communications applications could now be within reach.

The new device - built from indium phosphide and indium gallium arsenide - is designed with a compositionally graded collector, base and emitter to reduce transit time and improve current density. With their pseudomorphic heterojunction bipolar transistor, the researchers have demonstrated a speed of 604 gigahertz - the fastest transistor operation to date.

"Pseudomorphic grading of the material structure allows us to lower the bandgap in selected areas," said Milton Feng, the Holonyak Professor of Electrical and Computer Engineering and a researcher at the Coordinated Science Laboratory at Illinois. "This permits faster electron flow in the collector. The compositional grading of the transistor components also improves current density and signal charging time."

Feng and graduate student Walid Hafez fabricated the new device in the university’s Micro and Nanotechnology Laboratory. They describe the pseudomorphic HBT concept, and discuss the transistor’s high-speed operation, in the April 11 issue of the journal Applied Physics Letters.

The goal of a terahertz transistor was not possible using the previous device structure, Feng said. "To achieve such speed in a typical HBT, the current density would become so large it would melt the components. In our pseudomorphic HBT, we can operate at higher frequencies with less current density. With this new material structure, a terahertz transistor is achievable."

Faster transistors could facilitate faster computers, more flexible and secure wireless communications systems, and more effective electronic combat systems.

James E. Kloeppel | University of Illinois News Bure
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>