Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terrorist-proof buildings from new high-tech sensors

11.04.2005


Scientists develop a breed of sensors that can survive extremes of heat and pressure



Scientists have developed a new breed of sensors which can survive incredible levels of pressure and heat and that are helping researchers work out how to make buildings that could survive massive explosions. Professor Julian Jones, of Heriot-Watt University, will reveal the next generation of sensing devices at the Institute of Physics conference Physics 2005 in Warwick, heralding a new range of measurement and safety applications.

The three new types of sensor use specially-engineered optical fibres which respond to changes in their environment. They can monitor blast-waves from high explosives, structural safety in tunnels, bridges and buildings, bending in critical aircraft components, and deterioration in weapons stockpiles.


Most modern sensors are electronic and work on the principle that temperature, pressure or stress affects the electrical behaviour of the sensor. Usually, a computer measures these changes to produce a digital readout. But electronic sensors can be impractical, unreliable and even dangerous when used in the wrong conditions. They are unsafe in explosive environments and many medical applications, and are prone to interference when used in strong electromagnetic fields, such as in power plants, or magnetic resonance imaging. Fibre-optic alternatives, which work with light instead of electricity, have attracted serious interest and are beginning to monitor data which could never have been measured electronically.

The role of optical fibres in communications, as the basis of the telephone system and the internet, is well known. Much less familiar are the optical fibre sensors that have grown up at the same time. Measuring devices can be built out of a pair of these fibres, one to take the measurement, and the other to act as a reference. Light beams travel along the fibres, are reflected at the end, and travel back to the start where they merge together. This produces an interference pattern like the fringes formed when you fold a net curtain in two, with the exact pattern depending on the difference in distance that the two beams travel. If the path length of the "measurement" fibre varies, even by ten millionths of a millimetre, the pattern changes and the length variation can be calculated. This technique is called interferometry, and has been used for many years for precision measurement in physics laboratories. But optical fibres make it possible to take interferometry out of the lab to earn its living in the real world.

In recent years, such fibre-optic sensors have been used to measure strain in aeroplane wings and detect movements in large civil engineering projects such as bridges and dams, based on the same kinds of optical fibres as would be found in a modern optical communication system. But today Professor Jones described some very different kinds of fibres, custom designed for specific sensing tasks and promising a whole new range of high accuracy sensors.

The first special kind of fibre has multiple cores – not a useful development for optical communications, but ideal for measuring how something changes over short distances, by comparing the difference between adjacent cores. One simple but very useful application is to measure how a structure bends, where one side of the fibre stretches more than the other.

Professor Jones explained how special "gratings" can be inscribed with a laser beam along the length of a fibre, producing mirrors tuned to just one colour of light. After doing so, he can send white light up the fibre, from which the component colours will each be reflected at a different grating. "Taken together," explains Professor Jones, "this tells you exactly where the fibre is bending, by how much, and in which direction. That’s enough to measure the strains on all parts of a wing or a mast just by using the light coming from a single glass fibre." Previously, such a measurement would have required hundreds or even thousands of electrical sensors. The new sensors are already being developed in collaboration with NASA to monitor flexible aerodynamic wings and, closer to home, for safety monitoring of tunnels by measuring changes in their shape.

The second class of specialist fibres are made of plastic. Glass fibres have their limits, and optical strain gauges could be used in many more situations if only the fibres were more resilient. Modern plastic and composite structures are excellent for saving weight, but need to be monitored for excessive stresses. For this application, plastic fibres are ideal, but only now are they being made sufficiently slender for interferometry.

Thirdly, in situations where communications fibres are still best, scientists can make them even more versatile by constructing tiny structures at their tips. In one such example, they use a powerful laser to drill a hole just thousandths of a millimetre wide in the end of the fibre and then cap it with a lightweight membrane. "These microsensors may be the fastest-reacting pressure sensors in the world," explains Professor Jones. "And they’re so robust that we’ll be using them to measure blast waves. In the current climate of increased terror threat, there’s a huge demand for technology which could help to design bomb-proof buildings".

Professor Jones believes that fibre-optic sensors are becoming ever more useful, with applications in power generation, for air and sea guidance systems, and in food safety and medicine. The spread of this technology from the laboratory into everyday use has barely begun.

Professor Julian Jones is Professor of Engineering Optics and Head of the School of Engineering and Physical Sciences at Heriot-Watt University.

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.aop.hw.ac.uk/
http://www.physics2005.iop.org

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>