Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terrorist-proof buildings from new high-tech sensors

11.04.2005


Scientists develop a breed of sensors that can survive extremes of heat and pressure



Scientists have developed a new breed of sensors which can survive incredible levels of pressure and heat and that are helping researchers work out how to make buildings that could survive massive explosions. Professor Julian Jones, of Heriot-Watt University, will reveal the next generation of sensing devices at the Institute of Physics conference Physics 2005 in Warwick, heralding a new range of measurement and safety applications.

The three new types of sensor use specially-engineered optical fibres which respond to changes in their environment. They can monitor blast-waves from high explosives, structural safety in tunnels, bridges and buildings, bending in critical aircraft components, and deterioration in weapons stockpiles.


Most modern sensors are electronic and work on the principle that temperature, pressure or stress affects the electrical behaviour of the sensor. Usually, a computer measures these changes to produce a digital readout. But electronic sensors can be impractical, unreliable and even dangerous when used in the wrong conditions. They are unsafe in explosive environments and many medical applications, and are prone to interference when used in strong electromagnetic fields, such as in power plants, or magnetic resonance imaging. Fibre-optic alternatives, which work with light instead of electricity, have attracted serious interest and are beginning to monitor data which could never have been measured electronically.

The role of optical fibres in communications, as the basis of the telephone system and the internet, is well known. Much less familiar are the optical fibre sensors that have grown up at the same time. Measuring devices can be built out of a pair of these fibres, one to take the measurement, and the other to act as a reference. Light beams travel along the fibres, are reflected at the end, and travel back to the start where they merge together. This produces an interference pattern like the fringes formed when you fold a net curtain in two, with the exact pattern depending on the difference in distance that the two beams travel. If the path length of the "measurement" fibre varies, even by ten millionths of a millimetre, the pattern changes and the length variation can be calculated. This technique is called interferometry, and has been used for many years for precision measurement in physics laboratories. But optical fibres make it possible to take interferometry out of the lab to earn its living in the real world.

In recent years, such fibre-optic sensors have been used to measure strain in aeroplane wings and detect movements in large civil engineering projects such as bridges and dams, based on the same kinds of optical fibres as would be found in a modern optical communication system. But today Professor Jones described some very different kinds of fibres, custom designed for specific sensing tasks and promising a whole new range of high accuracy sensors.

The first special kind of fibre has multiple cores – not a useful development for optical communications, but ideal for measuring how something changes over short distances, by comparing the difference between adjacent cores. One simple but very useful application is to measure how a structure bends, where one side of the fibre stretches more than the other.

Professor Jones explained how special "gratings" can be inscribed with a laser beam along the length of a fibre, producing mirrors tuned to just one colour of light. After doing so, he can send white light up the fibre, from which the component colours will each be reflected at a different grating. "Taken together," explains Professor Jones, "this tells you exactly where the fibre is bending, by how much, and in which direction. That’s enough to measure the strains on all parts of a wing or a mast just by using the light coming from a single glass fibre." Previously, such a measurement would have required hundreds or even thousands of electrical sensors. The new sensors are already being developed in collaboration with NASA to monitor flexible aerodynamic wings and, closer to home, for safety monitoring of tunnels by measuring changes in their shape.

The second class of specialist fibres are made of plastic. Glass fibres have their limits, and optical strain gauges could be used in many more situations if only the fibres were more resilient. Modern plastic and composite structures are excellent for saving weight, but need to be monitored for excessive stresses. For this application, plastic fibres are ideal, but only now are they being made sufficiently slender for interferometry.

Thirdly, in situations where communications fibres are still best, scientists can make them even more versatile by constructing tiny structures at their tips. In one such example, they use a powerful laser to drill a hole just thousandths of a millimetre wide in the end of the fibre and then cap it with a lightweight membrane. "These microsensors may be the fastest-reacting pressure sensors in the world," explains Professor Jones. "And they’re so robust that we’ll be using them to measure blast waves. In the current climate of increased terror threat, there’s a huge demand for technology which could help to design bomb-proof buildings".

Professor Jones believes that fibre-optic sensors are becoming ever more useful, with applications in power generation, for air and sea guidance systems, and in food safety and medicine. The spread of this technology from the laboratory into everyday use has barely begun.

Professor Julian Jones is Professor of Engineering Optics and Head of the School of Engineering and Physical Sciences at Heriot-Watt University.

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.aop.hw.ac.uk/
http://www.physics2005.iop.org

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>