Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terrorist-proof buildings from new high-tech sensors

11.04.2005


Scientists develop a breed of sensors that can survive extremes of heat and pressure



Scientists have developed a new breed of sensors which can survive incredible levels of pressure and heat and that are helping researchers work out how to make buildings that could survive massive explosions. Professor Julian Jones, of Heriot-Watt University, will reveal the next generation of sensing devices at the Institute of Physics conference Physics 2005 in Warwick, heralding a new range of measurement and safety applications.

The three new types of sensor use specially-engineered optical fibres which respond to changes in their environment. They can monitor blast-waves from high explosives, structural safety in tunnels, bridges and buildings, bending in critical aircraft components, and deterioration in weapons stockpiles.


Most modern sensors are electronic and work on the principle that temperature, pressure or stress affects the electrical behaviour of the sensor. Usually, a computer measures these changes to produce a digital readout. But electronic sensors can be impractical, unreliable and even dangerous when used in the wrong conditions. They are unsafe in explosive environments and many medical applications, and are prone to interference when used in strong electromagnetic fields, such as in power plants, or magnetic resonance imaging. Fibre-optic alternatives, which work with light instead of electricity, have attracted serious interest and are beginning to monitor data which could never have been measured electronically.

The role of optical fibres in communications, as the basis of the telephone system and the internet, is well known. Much less familiar are the optical fibre sensors that have grown up at the same time. Measuring devices can be built out of a pair of these fibres, one to take the measurement, and the other to act as a reference. Light beams travel along the fibres, are reflected at the end, and travel back to the start where they merge together. This produces an interference pattern like the fringes formed when you fold a net curtain in two, with the exact pattern depending on the difference in distance that the two beams travel. If the path length of the "measurement" fibre varies, even by ten millionths of a millimetre, the pattern changes and the length variation can be calculated. This technique is called interferometry, and has been used for many years for precision measurement in physics laboratories. But optical fibres make it possible to take interferometry out of the lab to earn its living in the real world.

In recent years, such fibre-optic sensors have been used to measure strain in aeroplane wings and detect movements in large civil engineering projects such as bridges and dams, based on the same kinds of optical fibres as would be found in a modern optical communication system. But today Professor Jones described some very different kinds of fibres, custom designed for specific sensing tasks and promising a whole new range of high accuracy sensors.

The first special kind of fibre has multiple cores – not a useful development for optical communications, but ideal for measuring how something changes over short distances, by comparing the difference between adjacent cores. One simple but very useful application is to measure how a structure bends, where one side of the fibre stretches more than the other.

Professor Jones explained how special "gratings" can be inscribed with a laser beam along the length of a fibre, producing mirrors tuned to just one colour of light. After doing so, he can send white light up the fibre, from which the component colours will each be reflected at a different grating. "Taken together," explains Professor Jones, "this tells you exactly where the fibre is bending, by how much, and in which direction. That’s enough to measure the strains on all parts of a wing or a mast just by using the light coming from a single glass fibre." Previously, such a measurement would have required hundreds or even thousands of electrical sensors. The new sensors are already being developed in collaboration with NASA to monitor flexible aerodynamic wings and, closer to home, for safety monitoring of tunnels by measuring changes in their shape.

The second class of specialist fibres are made of plastic. Glass fibres have their limits, and optical strain gauges could be used in many more situations if only the fibres were more resilient. Modern plastic and composite structures are excellent for saving weight, but need to be monitored for excessive stresses. For this application, plastic fibres are ideal, but only now are they being made sufficiently slender for interferometry.

Thirdly, in situations where communications fibres are still best, scientists can make them even more versatile by constructing tiny structures at their tips. In one such example, they use a powerful laser to drill a hole just thousandths of a millimetre wide in the end of the fibre and then cap it with a lightweight membrane. "These microsensors may be the fastest-reacting pressure sensors in the world," explains Professor Jones. "And they’re so robust that we’ll be using them to measure blast waves. In the current climate of increased terror threat, there’s a huge demand for technology which could help to design bomb-proof buildings".

Professor Jones believes that fibre-optic sensors are becoming ever more useful, with applications in power generation, for air and sea guidance systems, and in food safety and medicine. The spread of this technology from the laboratory into everyday use has barely begun.

Professor Julian Jones is Professor of Engineering Optics and Head of the School of Engineering and Physical Sciences at Heriot-Watt University.

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.aop.hw.ac.uk/
http://www.physics2005.iop.org

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>