Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue engineers use ’shaped’ laser pulses in ’ultra-wideband’ research

06.04.2005


Engineers at Purdue University have developed a technique that could result in more accurate "ultra-wideband" radio signals for ground-penetrating radar, radio communications and imaging systems designed to see through walls.

The researchers first create laser pulses with specific "shapes," which precisely characterize the changing intensity of light from the beginning to end of each pulse. The pulses are then converted into electrical signals for various applications.

By controlling the shapes of laser pulses, the researchers are able to adjust the frequencies of the resulting radio signals and to produce signals with higher frequencies than are otherwise possible. Shorter signals make it easier to screen out interference and enhance image resolution, promising to improve the accuracy of systems used to detect landmines and other underground objects and for newly emerging devices that can look through walls and see what’s on the other side. "You want the best spatial resolution possible if you have two items buried close to one another," said Jason McKinney, a visiting assistant professor of electrical and computer engineering at Purdue. "If your pulse is too long, you get a combined reflection from both items back, but if your pulse is short enough, you get a separate reflection from each."



A similar situation arises in wireless communications. When radio signals are transmitted from one antenna to another, some travel directly to the second antenna while others bounce off of buildings and other objects along the way, causing "noise," or interference. By shaping the laser pulses so they are "narrow," shorter electronic signals can be created. The shorter the signals, the easier it is to pick them out from the noisy, interfering signals by the time they arrive at the receiving end of the transmission. The researchers’ technique will be detailed in a paper to appear in the April issue of IEEE Microwave and Wireless Components Letters, a journal published by the Institute of Electrical and Electronics Engineers. The paper was written by Ingrid S. Lin, a Purdue doctoral student, McKinney and Andrew Weiner, a professor of electrical and computer engineering.

Ultra-wideband technology, commonly referred to as UWB, has numerous potential applications, including high-speed handheld wireless communications for consumer electronics, radar systems in cars that might be used to prevent collisions and the development of "personal area networks," or wireless networks linking computer equipment, personal digital assistants and other devices within a person’s workspace.

While commercially available electronic devices produce a fixed set of wideband frequencies, the Purdue team is able to adjust the shapes of optical pulses and the resulting electrical signal, which means more precisely controlled ultra-wideband frequencies can be produced. "The main innovation is the ability to define what we want," McKinney said. "We’re able to say, ’Here is what I want, give it to me, and the system produces the desired signal.’"

The innovation could have laboratory applications in testing and research and in the development of ultra-wideband and wireless radio systems. Each laser pulse lasts about 300 femtoseconds, or three-tenths of a trillionth of a second. These pulses are processed using "optical arbitrary waveform technology" pioneered by Purdue researchers led by Weiner, which results in a three-nanosecond laser pulse. "There are commercial boxes that generate pulsed electrical signals, but the user has no control over the shape of these signals," McKinney said. "Because we can create desired shapes of pulsed light, we are able to create electrical signals that you can’t buy a commercial box to make. The pulse is designed to produce the desired electrical ’waveform,’ or a shaped electrical signal that evolves over time in a user-defined way."

The radio-frequency signal is obtained after a device converts the laser pulse into a radio signal for radar and wireless communications. "Our goal is to improve radio frequency communications, impulsive radar and other applications in the blossoming area of ultra-wideband radio frequency systems," McKinney said.

The work has been funded by the U.S. Army Research Office.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Jason D. McKinney, (765) 494-3454, mckinnjd@purdue.edu

Andrew M. Weiner, (765)494-5574, amw@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>