Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue engineers use ’shaped’ laser pulses in ’ultra-wideband’ research

06.04.2005


Engineers at Purdue University have developed a technique that could result in more accurate "ultra-wideband" radio signals for ground-penetrating radar, radio communications and imaging systems designed to see through walls.

The researchers first create laser pulses with specific "shapes," which precisely characterize the changing intensity of light from the beginning to end of each pulse. The pulses are then converted into electrical signals for various applications.

By controlling the shapes of laser pulses, the researchers are able to adjust the frequencies of the resulting radio signals and to produce signals with higher frequencies than are otherwise possible. Shorter signals make it easier to screen out interference and enhance image resolution, promising to improve the accuracy of systems used to detect landmines and other underground objects and for newly emerging devices that can look through walls and see what’s on the other side. "You want the best spatial resolution possible if you have two items buried close to one another," said Jason McKinney, a visiting assistant professor of electrical and computer engineering at Purdue. "If your pulse is too long, you get a combined reflection from both items back, but if your pulse is short enough, you get a separate reflection from each."



A similar situation arises in wireless communications. When radio signals are transmitted from one antenna to another, some travel directly to the second antenna while others bounce off of buildings and other objects along the way, causing "noise," or interference. By shaping the laser pulses so they are "narrow," shorter electronic signals can be created. The shorter the signals, the easier it is to pick them out from the noisy, interfering signals by the time they arrive at the receiving end of the transmission. The researchers’ technique will be detailed in a paper to appear in the April issue of IEEE Microwave and Wireless Components Letters, a journal published by the Institute of Electrical and Electronics Engineers. The paper was written by Ingrid S. Lin, a Purdue doctoral student, McKinney and Andrew Weiner, a professor of electrical and computer engineering.

Ultra-wideband technology, commonly referred to as UWB, has numerous potential applications, including high-speed handheld wireless communications for consumer electronics, radar systems in cars that might be used to prevent collisions and the development of "personal area networks," or wireless networks linking computer equipment, personal digital assistants and other devices within a person’s workspace.

While commercially available electronic devices produce a fixed set of wideband frequencies, the Purdue team is able to adjust the shapes of optical pulses and the resulting electrical signal, which means more precisely controlled ultra-wideband frequencies can be produced. "The main innovation is the ability to define what we want," McKinney said. "We’re able to say, ’Here is what I want, give it to me, and the system produces the desired signal.’"

The innovation could have laboratory applications in testing and research and in the development of ultra-wideband and wireless radio systems. Each laser pulse lasts about 300 femtoseconds, or three-tenths of a trillionth of a second. These pulses are processed using "optical arbitrary waveform technology" pioneered by Purdue researchers led by Weiner, which results in a three-nanosecond laser pulse. "There are commercial boxes that generate pulsed electrical signals, but the user has no control over the shape of these signals," McKinney said. "Because we can create desired shapes of pulsed light, we are able to create electrical signals that you can’t buy a commercial box to make. The pulse is designed to produce the desired electrical ’waveform,’ or a shaped electrical signal that evolves over time in a user-defined way."

The radio-frequency signal is obtained after a device converts the laser pulse into a radio signal for radar and wireless communications. "Our goal is to improve radio frequency communications, impulsive radar and other applications in the blossoming area of ultra-wideband radio frequency systems," McKinney said.

The work has been funded by the U.S. Army Research Office.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Jason D. McKinney, (765) 494-3454, mckinnjd@purdue.edu

Andrew M. Weiner, (765)494-5574, amw@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>