Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Efficient Heating Processes under Vacuum

01.04.2005



Infrared Emitter From Heraeus Noblelight With Quartz Reflector

The benefits of infrared heating can also be enjoyed under vacuum. Heraeus Noblelight a company within the worldwide Heraeus precious metals and technology organisation, is showing infrared emitters for the semi-conductor sector at the Semicon Exhibition, which takes place in Munich from the 12th to 14th April. Thanks to a newly developed reflector, there have been significant improvements in heating processes carried out under vacuum conditions.

Heating during production processes carried out under vacuum is a genuine requirement, which conventional heating techniques, such as warm air ovens, cannot meet. Infrared quartz emitters have already been successfully used before now, although directing the heat by a reflector has not been possible, as normal reflectors can give off evaporated metal when heated.



Without a reflector, emitters give out their heat in all directions, so that the complete vacuum chamber is heated up. A reflector helps to target the infrared radiation and a gold reflector, for example, directs around 90% of the emitted heat onto the product.
Heraeus Noblelight has developed a new reflector, which, unlike conventional reflectors, is not made of gold or metal oxides but of synthetic quartz glass and is consequently absolutely metal-free. Heraeus Noblelight has already applied for a patent for this new design of reflector.

Tests have shown that the reflection properties of the new quartz glass reflector are comparable with those of a gold reflector. The new reflector now allows the benefits of infrared heating technology to be enjoyed in processes under vacuum, such as for high purity products and high temperature processes.

Infrared radiation generates heat directly within the material to be heated, without the need for any intermediary heat transfer medium. Consequently, large amounts of energy can be transferred very quickly. Quartz glass emitters, with a reflector of synthetic quartz glass, help to minimise contamination during the manufacture of high purity products.
Quartz glass is of high purity and is extremely heat-resistant. There is no need for reflector cooling which is normally necessary for high temperature processes, as no metal ions are evaporated off.

Heraeus Noblelight offers the complete range of infrared radiation, from near infrared (NIR) to medium wave carbon technology CIR. It can carry out trials using customers’ own materials and advises on the selection of the optimum emitters for particular applications.

Reader inquiries:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Stefan Fuchs
Ph +49 6181/35-8469, F +49 6181/35-16 8469541
E-Mail stefan.fuchs@heraeus.com

Press Inquiries:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Ph +49 6181/35-8547, F +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Heraeus Noblelight GmbH, with its headquarters in Hanau and with subsidiaries in the USA, Great Britain and China, is one of the technology- and market-leaders in the production of specialist light sources. In 2003, Heraeus Noblelight had an annual turnover of 65 Million € and employs 524 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in manufacture, industrial process technology, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

The precious metal and technology organisation Heraeus, is a market- and technology-leader, worldwide, in the fields of precious metals, dental materials, sensors, quartz glass and specialist light sources. In 2003, the organisation achieved a turnover of 7.4 milliard €, with more than 9200 employees worldwide in more than 100 sister companies and associated companies. Because of its very wide product portfolio, the organisation, which was founded in 1851, is relatively independent of particular developments in individual industrial sectors.

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>