Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Efficient Heating Processes under Vacuum

01.04.2005



Infrared Emitter From Heraeus Noblelight With Quartz Reflector

The benefits of infrared heating can also be enjoyed under vacuum. Heraeus Noblelight a company within the worldwide Heraeus precious metals and technology organisation, is showing infrared emitters for the semi-conductor sector at the Semicon Exhibition, which takes place in Munich from the 12th to 14th April. Thanks to a newly developed reflector, there have been significant improvements in heating processes carried out under vacuum conditions.

Heating during production processes carried out under vacuum is a genuine requirement, which conventional heating techniques, such as warm air ovens, cannot meet. Infrared quartz emitters have already been successfully used before now, although directing the heat by a reflector has not been possible, as normal reflectors can give off evaporated metal when heated.



Without a reflector, emitters give out their heat in all directions, so that the complete vacuum chamber is heated up. A reflector helps to target the infrared radiation and a gold reflector, for example, directs around 90% of the emitted heat onto the product.
Heraeus Noblelight has developed a new reflector, which, unlike conventional reflectors, is not made of gold or metal oxides but of synthetic quartz glass and is consequently absolutely metal-free. Heraeus Noblelight has already applied for a patent for this new design of reflector.

Tests have shown that the reflection properties of the new quartz glass reflector are comparable with those of a gold reflector. The new reflector now allows the benefits of infrared heating technology to be enjoyed in processes under vacuum, such as for high purity products and high temperature processes.

Infrared radiation generates heat directly within the material to be heated, without the need for any intermediary heat transfer medium. Consequently, large amounts of energy can be transferred very quickly. Quartz glass emitters, with a reflector of synthetic quartz glass, help to minimise contamination during the manufacture of high purity products.
Quartz glass is of high purity and is extremely heat-resistant. There is no need for reflector cooling which is normally necessary for high temperature processes, as no metal ions are evaporated off.

Heraeus Noblelight offers the complete range of infrared radiation, from near infrared (NIR) to medium wave carbon technology CIR. It can carry out trials using customers’ own materials and advises on the selection of the optimum emitters for particular applications.

Reader inquiries:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Stefan Fuchs
Ph +49 6181/35-8469, F +49 6181/35-16 8469541
E-Mail stefan.fuchs@heraeus.com

Press Inquiries:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Ph +49 6181/35-8547, F +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Heraeus Noblelight GmbH, with its headquarters in Hanau and with subsidiaries in the USA, Great Britain and China, is one of the technology- and market-leaders in the production of specialist light sources. In 2003, Heraeus Noblelight had an annual turnover of 65 Million € and employs 524 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in manufacture, industrial process technology, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

The precious metal and technology organisation Heraeus, is a market- and technology-leader, worldwide, in the fields of precious metals, dental materials, sensors, quartz glass and specialist light sources. In 2003, the organisation achieved a turnover of 7.4 milliard €, with more than 9200 employees worldwide in more than 100 sister companies and associated companies. Because of its very wide product portfolio, the organisation, which was founded in 1851, is relatively independent of particular developments in individual industrial sectors.

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>