Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers bridge superconductivity gap

01.04.2005


University of California scientists at Los Alamos National Laboratory working with a researcher from Chonnam National University in South Korea have found that magnetic fluctuations appear to be responsible for superconductivity in a compound called plutonium-cobalt-pentagallium (PuCoGa5). The discovery of this "unconventional superconductivity" may lead scientists to a whole new class of superconducting materials and toward the goal of eventually synthesizing "room-temperature" superconductors.



In research reported in today’s edition of the scientific journal Nature, Nicholas Curro and a team of researchers provide evidence of how magnetic fluctuations, rather than interactions mediated by tiny vibrations in the underlying crystal structure, may be responsible for the electron pairing that produces superconductivity in the mixture of plutonium, cobalt and gallium.

Superconductivity is an unusual state of matter in which electrical current flows without resistance through a material as a result of the material’s electrons acting in pairs. Since the discovery at Los Alamos of PuCoGa5 roughly two years ago, a burning question has been whether the compound was just another garden-variety superconductor, a so-called s-wave superconductor, or an unconventional one that is mediated by magnetic fluctuations, a d-wave superconductor.


Although the temperatures at which superconductivity is observed are usually quite low, a handful of compounds like PuCoGa5 have been found to possess superconductivity at temperatures warmer than minus 427 degrees Fahrenheit. Even though that temperature seems low, PuCoGa5 possesses highest superconducting transition temperature among actinide based compounds found so far. This "unconventional superconductivity" suggests that PuCoGa5 may be one of a very small handful of superconductors whose superconductivity actually derives from magnetic correlations.

Scientists theorize that having found one unconventional superconductor like PuCoGa5, they may find more in the future. Making the research even more intriguing is the fact that plutonium is a base actinide material of the compound. This new class of magnetically mediated superconductors might encompass a broad range of materials, metals to oxides, and be the path toward superconductor science’s ultimate goal to someday synthesize a "room-temperature" superconductor that would be the basis for the dissipation-less flow of electric current through power lines, and for an even more minute generation of computer chips. The discovery is the result of collaboration between the Laboratory’s Materials Science and Technology and Theoretical divisions. In addition to Curro, the team includes Tod Caldwell, Eric Bauer, Luis Morales, Yunkyu Bang, Matthias Graf, Alexander Balatsky, Joe Thompson and John Sarrao.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Power and Electrical Engineering:

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

nachricht Researchers at Kiel University develop extremely sensitive sensor system for magnetic fields
15.02.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>