Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hanover Trade Fair: Hydrogen Technology made by Fraunhofer - Weather-Resistant Miniature Fuel Cells and Durable SOFC Stacks

01.04.2005


SOFC stack (solid oxide fuel cell) with 20 single cells for use in decentralised power supply. Source: Fraunhofer IKTS


Fuel-cell stack during a low-temperature test. Source: Fraunhofer ISE


The newest Fraunhofer developments in hydrogen technology can be seen at the Hydrogen + Fuel Cells Stand at the Hanover Trade Fair. The Fraunhofer Institute for Ceramic Technologies and Sintered Materials IKTS will display durable SOFC stacks with a power of 1 kWel. The fuel cells are intended for application in distributed power supplies and can be operated with either fossil fuels or biogas. In addition, an extremely thin Ag/Zn micro-battery for integration in sensor cards will be presented. The Fraunhofer Institute for Solar Energy Systems ISE will display a weather-resistant, near-industrial prototype of a miniature fuel-cell system for the temperature range from -20 °C to +40 °C. The target markets are applications in off-grid measurement and controls technology, where the trend is clearly towards decentralised power supplies for the system components.

The extremely thin micro-battery developed by Fraunhofer IKTS, which is less than 0.5 mm thick, is designed for mobile, highly integrated and inexpensive applications, preferably in credit-card format. It is intended to be integrated into miniaturised electronic products, together with sensors, electronics and data interfaces. The primary battery consists of a silver oxide cathode and a zinc anode, which are deposited with thick-film technology onto the current collectors. The flexibility of thick-film technology enables electrochemical cells with differing capacities to be constructed. The capacity of the extremely thin power supplies is 15 mAh, the cell voltage is 1.5 V.

Widespread application of high-temperature solid oxide fuel cells SOFC in decentralised power supplies demands that the long-term stability and the electric contacts in the cathode chamber be improved, and that the currently high costs be reduced. Fraunhofer IKTS has been conducting research on SOFC for more than ten years and can now present stacks with a power of 1 kWel, which have a predicted lifetime of 40 000 hours. The high overall efficiency value of the SOFC, around 80 %, is a particular advantage.



In distributed applications in combined heat and power CHP systems, stack units in the power range between 1 and 5 kWel are needed. The remaining system components are responsible for purification and supply of the fuel gas, distribution and use of the heat, and voltage conversion to 220 V AC. These systems are designed for electricity and heat cogeneration in free-standing houses and apartment blocks, with only natural gas or biogas being required as the primary energy source.

Fraunhofer ISE is developing miniature fuel-cell systems in the low power range and recently extended their application range to extreme operating temperatures and air humidity values. Outdoor temperatures below freezing and high summer temperatures around 40 °C present additional challenges to the researchers. Because the reaction moisture in the fuel cell freezes and forms ice at low temperatures, and on the other hand, the membrane-electrode assembly dries out at high temperatures, it has not been possible previously to operate fuel cells under these conditions. Fraunhofer ISE has now succeeded in reproducing these extreme operating conditions in a fully automated fuel-cell test stand with an integrated climatic chamber, allowing appropriate solutions to be developed. By ingeniously guiding hot and cold air currents through the novel casing, the system heating or cooling is supported as required. With the help of innovative, microprocessor controls, the fuel cell system can now start reliably at -20 °C and still operate safely at temperatures to above 40 °C .

Hanover Trade Fair 11th-15th April 2005, Hall 13, Stand H58/7

Information Material:
Fraunhofer ISE, Press and Public Relations
Tel. +49 (0) 7 61/45 88 -51 50,
e-mail: info@ise.fraunhofer.de

Project leader at Fraunhofer IKTS
Dr Peter Otschik
Tel.: +49 (0) 3 51/25 53 506
e-mail: peter.otschik@ikts.fraunhofer.de

Project leader at Fraunhofer ISE
Dr Carsten Agert
Tel.: +49 (0) 7 61/45 88-53 46
e-mail: carsten.agert@ise.fraunhofer.de

Karin Schneider | idw
Further information:
http://www.ise.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>