Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Turbulence In The Fast Lane at Mach 10 And Beyond

17.03.2005


Although NASA’s X-43A and other hypersonic airplanes use air-breathing engines and fly much like 747s, there’s a big difference between ripping air at Mach 10 (around 7,000 mph) and cruising through it at 350 mph.

These differences are even more pronounced when hypersonic aircraft sip rarified air at 100,000 feet, while commercial airliners gulp the much thicker stuff at 30,000. Aero-thermodynamic heating is a very big deal at Mach 10. The critical point comes where air changes from flowing smoothly across a surface < laminar flow < to when it becomes chaotic < turbulent flow.

Aero-thermodynamic heating largely determines the engine size, weight, choice of materials and overall size in hypersonic airplanes. So engineers would like to have a much better understanding of what triggers turbulence and how they can control it at hypersonic speeds. Air goes from laminar to turbulent at what engineers call the "boundary layer." They understand how this happens at slower speeds, but they’re still grappling with which factors influence it at hypersonic speeds.



University of Arizona Associate Professor Anatoli Tumin, of Aerospace and Mechanical Engineering (AME), is among those studying the problem and has developed a model that predicts the surface roughness effects on the transition from laminar to turbulent flow at hypersonic speeds. His theory has a lot to do with partial differential equations, Navier-Stokes equations and other brain-taxing mathematics that Tumin and Applied Math Ph.D. student Eric Forgoston have grappled with during the past couple of years. "In principle, the theory tells us what the optimal perturbations are that will lead to turbulent flow," Tumin said. "Now we can explore different geometries for roughness elements to see which are best. We can explore how to space them and where we should position them."

The researchers will soon run a supercomputer simulation to compare their theory with what actually happens when air flows across a roughened surface at hypersonic speeds. Currently, these simulations guzzle tens of hours of supercomputing time. But if Tumin’s theory is correct, engineers will soon get the same results from their office laptops. Tumin is working with Research Assistant Professor Simone Zuccher, of UA AME, to develop a software package that will allow designers to do this laptop-style analysis. The software will help them predict when and where the transitions from laminar to turbulent flow occur in engines and on surfaces operating at hypersonic speeds. "We developed our theory and arrived at what is called the ’transient growth mechanism,’" Tumin said. "The airflow is stable, but there are some tiny disturbances within it that can grow downstream. We can generate these downstream, streamwise vortices (spiraling flows) by using the correct amount of roughness in the right places. We can do this at an engine inlet, for instance, in order to trip the boundary layer and to have stable engine performance." "If we can understand the laminar-turbulent transition mechanism, we can predict the transition point accurately," Tumin said. "This is important for heat protection, where you want laminar flow. Otherwise, you need to add a lot of weight for thermal insulation because you have to assume turbulent flow at the surface when you do your design calculations. Similarly, engine designers would like to have a quick transition to turbulence to have a turbulent flow at an engine inlet."

Ultimately, better understanding the transition to turbulence at hypersonic speeds will allow designers to build lighter, faster, more efficient airplanes capable of traveling at even higher speeds of Mach 15 or more.

Contact Information:

Anatoli Tumin
Associate Professor
Aerospace and Mechanical Engineering
tumin@email.arizona.edu

Ed Stiles | UA College of Engineering
Further information:
http://uanews.org/engineering
http://www.nasa.gov/missions/research/x43-main.html
http://www.arizona.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>