Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot-based system developed at Carnegie Mellon detects life in Chile’s Atacama desert

17.03.2005


A unique rover-based life detection system developed by Carnegie Mellon University scientists has found signs of life in Chile’s Atacama Desert, according to results being presented at the 36th Lunar and Planetary Science Conference March 14-18 in Houston. This marks the first time a rover-based automated technology has been used to identify life in this harsh region, which serves as a test bed for technology that could be deployed in future Mars missions.



"Our life detection system worked very well, and something like it ultimately may enable robots to look for life on Mars," said Alan Waggoner, Atacama team member and director of the Molecular Biosensor and Imaging Center at the university’s Mellon College of Science.

The "Life in the Atacama" 2004 field season – from August to mid-October – was the second phase of a three-year program whose goal is to understand how life can be detected by a rover that is being controlled by a remote science team. The project is part of NASA’s Astrobiology Science and Technology Program for Exploring Planets, or ASTEP, which concentrates on pushing the limits of technology in harsh environments. David Wettergreen, associate research professor in Carnegie Mellon’s Robotics Institute, leads rover development and field investigation aspects of the project. Nathalie Cabrol, a planetary scientist at NASA’s Ames Research Center and the SETI Institute, leads the science investigation.


Life is barely discernable over most areas of the Atacama, but the rover’s instruments were able to detect lichens and bacterial colonies in two areas: a coastal region with a more humid climate and an interior, very arid region less hospitable to life.

"We saw very clear signals from chlorophyll, DNA and protein. And we were able to visually identify biological materials from a standard image captured by the rover. Taken together, these four pieces of evidence are strong indicators of life," said Waggoner. "Now, our findings are being confirmed in the lab. Samples collected in the Atacama were examined, and scientists found that they contained life. The lichens and bacteria in the samples are growing and awaiting analysis."

Waggoner and his colleagues have designed a life detection system equipped to detect fluorescence signals from sparse life forms, including those that are mere millimeters in size. Their fluorescence imager, which is located underneath the rover, detects signals from chlorophyll-based life, such as cyanobacteria in lichens, and fluorescent signals from a set of dyes designed to light up only when they bind to one of the following – nucleic acid, protein, lipid or carbohydrate – all molecules of life.

"We don’t know of other remote methods capable both of detecting low levels of micro-organisms and visualizing high levels incorporated as biofilms or colonies," said Gregory Fisher, project imaging scientist.

"Our fluorescent imager is the first such system to work in the daylight while in the shade of the rover. The rover uses solar energy to operate so it needs to travel during daylight hours. Many times, the images we capture may only reveal a faint signal. Any sunlight that leaks in to the camera of a conventional fluorescence imager would obscure the signal," said Waggoner.

"To avoid this problem, we designed our system to excite dyes with high intensity flashes of light. The camera only opens during those flashes, so we are able to capture a strong fluorescence signal during daytime exploration," said Shmuel Weinstein, project manager.

During the mission, a remote science team located in Pittsburgh instructed the rover’s operations. A ground truth team at the site collected samples studied by the rover to bring back for further examination in the lab. On a typical day in the field, the rover woke up and followed a path designated the previous day by the remote operations science team. The rover followed a transect and stopped occasionally to perform detailed surface inspection, effectively creating a "macroscopic quilt" of geologic and biological data in selected 10 by 10 centimeter panels. After the rover departed a region, the ground truth science team collected samples the rover had examined.

"Based on the rover findings in the field and our tests in the laboratory, there is not one example of the rover giving a false positive," said Edwin Minkley, director of the Center for Biotechnology and Environmental Processes in the Department of Biological Sciences. "Every sample we tested had bacteria in it."

Minkley is conducting analyses to determine the genetic characteristics of the recovered bacteria to identify the different microbial species present in the samples. He also is testing the bacteria’s sensitivity to ultraviolet (UV) radiation. One hypothesis is that the bacteria may have greater UV resistance because they are exposed to extreme UV radiation in the desert environment. This characterization also may explain why such a high proportion of the bacteria from the most arid site are pigmented – red, yellow or pink – as they grow in the laboratory, according to Minkley.

The first phase of the ASTEP project began in 2003 when a solar-powered robot named Hyperion, also developed at Carnegie Mellon, was taken to the Atacama as a research test bed. Scientists conducted experiments with Hyperion to determine the optimum design, software and instrumentation for a robot that would be used in more extensive experiments conducted in 2004 and in 2005. Zoë, a brand new robot, was developed in response to what was learned in 2003. In the final year of the project, plans call for Zoë, equipped with a full array of scientific instruments, to operate autonomously as it travels 50 kilometers over a two-month period.

The science team, led by Cabrol, is made up of geologists and biologists who study both Earth and Mars at institutions including NASA’s Ames Research Center and Johnson Space Center, SETI Institute, Jet Propulsion Laboratory, the University of Tennessee, Carnegie Mellon, Universidad Catolica del Norte (Chile), the University of Arizona, the University of California, Los Angeles, the British Antarctic Survey, and the International Research School of Planetary Sciences (Pescara, Italy).

The Life in the Atacama project is funded with a $3 million, three-year grant from NASA to Carnegie Mellon’s Robotics Institute in the School of Computer Science. William "Red" Whittaker is the principal investigator. Waggoner is principal investigator for the companion project in life-detection instruments, which has a separate $900,000 grant from NASA.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>