Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Tree-Power’ Could be Future Energy Source

15.03.2005


A wood-fueled electricity generating plant may be in your future.



In fact, the future is ’now’ in some Scandinavian countries, said Dr. Darwin Foster, Texas Cooperative Extension forestry program leader. "In Sweden, they’re already bundling up what we’re leaving in the forest after a timber harvest and using it as bio-fuel," Foster said. "Bio-fuel" is all-inclusive term that includes any renewable resource used to generate energy. As with ethanol distilled from small grains byproducts and methane from animal-waste, wood refuse is another renewable energy source. The key word is "renewable," Foster said. "As compared to fossil fuels which take hundreds of millennia to create and are not renewable," he said.

Using forest bio-mass – limbs, bark, tree tops – as a bio-fuel is not unheard of in the United States. Forest product manufacturing concerns already burn wood residue in steam boilers. The steam is used to drive electrical generators and supply part of the energy needed to run the plant. Other mills use "black liquor" – the lignin-rich residue of the pulp and paper industry – for heat, steam and electric power generation.


But currently, in both examples, the residue used is created at the plant during the manufacturing process, not recycled from the harvest site as many European countries do, Foster said. "In one of our meetings, a forest product manufacturer indicated that about 12 percent of the volume delivered to their plant wound up as residue," he said. "It’s mostly bark, but there’s some fines (sawdust) too. But it’s just a drop in the bucket as far as their energy needs go."

But the use of forest bio-fuel is not limited to energy production of forest industry plants. With prices of natural gas, crude oil and other non-renewable sources rising, scientists are looking at using bio-fuels for residential consumption, Foster said. At least one company in Texas, Green Mountain Energy in Austin, has turned this from science fiction into science fact. Green Mountain uses wood residue to generate a part of the electricity it produces and sells to Austin area clients. "The potential is huge," Foster said.

In the United States and many other countries, tree tops are left at the harvested sites. Though the tonnage is huge, these tops are considered "unmerchantable" and are left where they fall to bio-degrade or are burned or chipped to speed up the process. The tops are left in the field because they are considered too bulky and too small in diameter to be worth the cost of hauling to a processing plant. But the Scandinavians have shown harvesting this potentially huge energy source is economically feasible – at least in Europe. But can it be so in the United States?

Science and preliminary economic studies say forest residue can be an economically viable energy source. What’s required is for everyone involved in the forestry industry – foresters, plant operators, forest landowners, energy producers and educators – to rethink how they do things, Foster said.

Armed with a $500,000 grant from the U.S. Department of Agriculture, Foster and his colleagues in Extension Forestry and the Texas A&M University department of forest science plan to develop education modules on forest bio-fuel production, harvest and utilization. Foster expects the modules will be comprised of not only printed material, such as brochures and handbooks, but also Web pages and multi-media CD-ROMs and DVDs.

Specifically, the training modules will address:

  • An overview of how forest residue is already used in Southern forests;
  • How to manage forests, old and new, for enhanced bio-fuel production;
  • How to harvest and process forest residue for bio-fuel and other products;
  • How to utilize biomass for bio-energy, bio-fuels and bio-based products;
  • The socio-economic impacts and community development issues; and
  • How to develop environmentally sustainable biomass production systems for bio-energy and bio-based products.

The last subject – environmental sustainability – may be expanded to educate the public, Foster said. Some people might not understand the environmental benefits of burning forest residue to produce fuel.

But the economic benefits are two-fold, he said. First it is a truly renewable resource. Trees are efficient at turning sunlight, moisture and a few basic nutrients into bio-mass. Using forest residue as bio-fuel also will utilize a resource that is being left to rot in the field.

But another important issue is carbon sequestration. Trees "breathe" in carbon dioxide, one of the major greenhouse gases. The trees "breathe out" oxygen and sequester the carbon as part of the biomass.

"Carbon is the ‘C’ in CO2," Foster said.

True, burning the residue emits carbon dioxide, but as most of the harvested forest mass would be used for lumber, furniture and paper, there would still be a net sequestration of carbon.

Another common concern, Foster said, was that harvesting forest residues could cause nutrient deficiencies and retard future re-forestation efforts.

But studies have shown, residues can be harvested without loss of regrowth productivity as long as a few simple precautions are taken, he said. These precautions include not taking 100 percent of the residues, avoiding harvesting on sensitive sites, and not removing residues after every harvest. In some areas, returning most of the nutrients as ash to the harvest site might be possible, he said.

"The whole point of this program is to work to reduce our dependence on non-renewable fossil fuels," Foster said.

Robert Burns | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>