Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial antenna helps ’cockroach robot’ scurry along walls

14.03.2005


Student-made device sends obstacle warnings to mechanical bug’s brain



Can a robot learn to navigate like a cockroach? To help researchers find out if a mechanical device can mimic the pesky insect’s behavior, a Johns Hopkins engineering student has built a flexible, sensor-laden antenna. Like a cockroach’s own wriggly appendage, the artificial antenna sends signals to a wheeled robot’s electronic brain, enabling the machine to scurry along walls, turn corners and avoid obstacles.

The work is important because most robotic vehicles that are sent into dangerous locations rely on artificial vision or sonar systems to find a safe path. But robotic eyes don’t operate well in low light, and sonar systems can be confused by polished surfaces. As an alternative, Noah J. Cowan, an assistant professor of mechanical engineering at Johns Hopkins, is turning to the sense of touch, drawing inspiration from bugs that move quite skillfully through dark rooms with varied surfaces.


The key, Cowan said, is the cockroach’s antennae, which touch adjacent walls and alert the insect to obstacles. As a postdoctoral fellow at the University of California, Berkeley, Cowan collaborated with researchers at Stanford University to build a crude antenna to show that a moving machine could use the same technique. After joining the faculty at Johns Hopkins, he assigned undergraduate Owen Y. Loh to build a more complex antenna to permit more advanced experiments with a cockroach-inspired robot.

In the fall of 2003, Loh began studying cockroach biology and working up designs for a robot antenna based on the insect model. "I liked the idea of combining biology and robotics," he said.

As a junior mechanical engineering major in the spring of 2004, Loh received a Provost’s Undergraduate Research Award from the university, allowing him to continue this work in Cowan’s lab during the summer. At summer’s end, when the lab team quickly needed an antenna for critical robotic experiments, Loh assembled a simple but effective prototype in less than a week.

These experiments resulted in a peer-reviewed paper that has been accepted for presentation in April at the International Conference on Robotics and Automation in Barcelona, Spain. Loh, who is listed as second author on the paper, plans to attend with Cowan and other members of the lab team.

In recent months, Loh has fabricated a more advanced version of the antenna. This model is made of cast urethane, a flexible rubber-like substance, encased in a clear plastic sheath. Embedded in the urethane are six strain gages, sensors that change resistance as they are bent. "We’ve calibrated the antenna so that certain voltages correspond to certain bending angles that occur as the antenna touches the wall or some other object," Loh said.

This data is fed to the robotic’s controller, enabling it to sense its position in relation to the wall and to maneuver around obstacles. When the antenna signals that the robot is veering too close to the wall, the controller steers it away.

The newer version of the antenna is being tested by Brett L. Kutscher, a former Provost’s Undergraduate Research Award recipient who recently finished his master’s degree thesis in Cowan’s lab. Cowan believes the cockroach-inspired antennae being developed by his team could eventually provide a new generation of robots with an enhanced ability to move safely through dark and hazardous locations, such as smoke-filled rooms strewn with debris.

He said Loh, now 21, from Okemos, Mich., provided crucial assistance. "Owen brought a set of skills to that lab that none of us had," Cowan said. "I’m more of an abstract and theoretical researcher. Owen is very good at making things with his hands."

On March 10, Steven Knapp, university provost and senior vice president for academic affairs, hosted the 12th annual Provost’s Undergraduate Research Awards ceremony, which honored the 45 winners who conducted their projects in the summer and fall of 2004. Since 1993, about 40 students each year have received PURA grants of up to $3,000 to conduct original research, some results of which have been published in professional journals. The awards, funded through a donation from the Hodson Trust, are an important part of the university’s commitment to research opportunities for undergraduates.

The Johns Hopkins University is recognized as the country’s first graduate research university, and has been in recent years the leader among the nation’s research universities in winning federal research and development grants. The opportunity to be involved in important research is one of the distinguishing characteristics of an undergraduate education at Johns Hopkins.

The Provost’s Undergraduate Research Awards program provides one of these research opportunities, open to students in each of the university’s four schools with full-time undergraduates: the Krieger School of Arts and Sciences, the Whiting School of Engineering, the Peabody Conservatory and the School of Nursing.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>