Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial antenna helps ’cockroach robot’ scurry along walls

14.03.2005


Student-made device sends obstacle warnings to mechanical bug’s brain



Can a robot learn to navigate like a cockroach? To help researchers find out if a mechanical device can mimic the pesky insect’s behavior, a Johns Hopkins engineering student has built a flexible, sensor-laden antenna. Like a cockroach’s own wriggly appendage, the artificial antenna sends signals to a wheeled robot’s electronic brain, enabling the machine to scurry along walls, turn corners and avoid obstacles.

The work is important because most robotic vehicles that are sent into dangerous locations rely on artificial vision or sonar systems to find a safe path. But robotic eyes don’t operate well in low light, and sonar systems can be confused by polished surfaces. As an alternative, Noah J. Cowan, an assistant professor of mechanical engineering at Johns Hopkins, is turning to the sense of touch, drawing inspiration from bugs that move quite skillfully through dark rooms with varied surfaces.


The key, Cowan said, is the cockroach’s antennae, which touch adjacent walls and alert the insect to obstacles. As a postdoctoral fellow at the University of California, Berkeley, Cowan collaborated with researchers at Stanford University to build a crude antenna to show that a moving machine could use the same technique. After joining the faculty at Johns Hopkins, he assigned undergraduate Owen Y. Loh to build a more complex antenna to permit more advanced experiments with a cockroach-inspired robot.

In the fall of 2003, Loh began studying cockroach biology and working up designs for a robot antenna based on the insect model. "I liked the idea of combining biology and robotics," he said.

As a junior mechanical engineering major in the spring of 2004, Loh received a Provost’s Undergraduate Research Award from the university, allowing him to continue this work in Cowan’s lab during the summer. At summer’s end, when the lab team quickly needed an antenna for critical robotic experiments, Loh assembled a simple but effective prototype in less than a week.

These experiments resulted in a peer-reviewed paper that has been accepted for presentation in April at the International Conference on Robotics and Automation in Barcelona, Spain. Loh, who is listed as second author on the paper, plans to attend with Cowan and other members of the lab team.

In recent months, Loh has fabricated a more advanced version of the antenna. This model is made of cast urethane, a flexible rubber-like substance, encased in a clear plastic sheath. Embedded in the urethane are six strain gages, sensors that change resistance as they are bent. "We’ve calibrated the antenna so that certain voltages correspond to certain bending angles that occur as the antenna touches the wall or some other object," Loh said.

This data is fed to the robotic’s controller, enabling it to sense its position in relation to the wall and to maneuver around obstacles. When the antenna signals that the robot is veering too close to the wall, the controller steers it away.

The newer version of the antenna is being tested by Brett L. Kutscher, a former Provost’s Undergraduate Research Award recipient who recently finished his master’s degree thesis in Cowan’s lab. Cowan believes the cockroach-inspired antennae being developed by his team could eventually provide a new generation of robots with an enhanced ability to move safely through dark and hazardous locations, such as smoke-filled rooms strewn with debris.

He said Loh, now 21, from Okemos, Mich., provided crucial assistance. "Owen brought a set of skills to that lab that none of us had," Cowan said. "I’m more of an abstract and theoretical researcher. Owen is very good at making things with his hands."

On March 10, Steven Knapp, university provost and senior vice president for academic affairs, hosted the 12th annual Provost’s Undergraduate Research Awards ceremony, which honored the 45 winners who conducted their projects in the summer and fall of 2004. Since 1993, about 40 students each year have received PURA grants of up to $3,000 to conduct original research, some results of which have been published in professional journals. The awards, funded through a donation from the Hodson Trust, are an important part of the university’s commitment to research opportunities for undergraduates.

The Johns Hopkins University is recognized as the country’s first graduate research university, and has been in recent years the leader among the nation’s research universities in winning federal research and development grants. The opportunity to be involved in important research is one of the distinguishing characteristics of an undergraduate education at Johns Hopkins.

The Provost’s Undergraduate Research Awards program provides one of these research opportunities, open to students in each of the university’s four schools with full-time undergraduates: the Krieger School of Arts and Sciences, the Whiting School of Engineering, the Peabody Conservatory and the School of Nursing.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>