Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF-developed detectors help guard against foam flaws in shuttle’s fuel tank

09.03.2005


The engineers who built the massive external fuel tank that will power the shuttle Discovery into orbit this spring used sophisticated X-ray detectors developed by UF researchers to reduce the chance of a defect in the foam insulation covering the tank. The detectors, first invented as a new technology to find land mines, can identify tiny gaps, or air-filled voids, in the insulating foam without causing any damage. It is believed that such a gap – possibly located between the foam and the tank’s surface – caused a suitcase-sized piece of foam to break off during Columbia’s liftoff in January 2003. The chunk struck the edge of the shuttle’s left wing, seriously damaging it and spurring the shuttle’s destruction during re-entry on Feb. 1.



"We can do the inspection of the foam as it exists already sprayed onto the tank. We don’t have to cut into it," said Warren Ussery, team leader for the return to flight nondestructive evaluation team at Lockheed Martin’s Michoud Assembly Facility in New Orleans, where the shuttle’s external tanks are manufactured. "We’re able to find critical voids with that (the UF detector)."

UF nuclear engineering professor Ed Dugan and retired UF nuclear engineering professor Alan Jacobs began experimenting with the modified "backscatter" X-ray detector several years ago as part of research aimed at engineering a more effective landmine detector. Conventional X-ray machines propel radiation through a target object to radiographic film on the other side. Different objects absorb X-rays to differing extents, so some show up more prominently on film than others. Backscatter X-ray machines were developed for circumstances when it is impossible to place film behind the object, as is the case with the shuttle tank. Contrasting conventional machines, they obtain images by capturing the radiation scattered "back" from the target.


Dugan said conventional backscatter detectors select only the radiation -- which takes the form of photons – that has had a single collision with the target object. The detectors ignore "multiple-collision" photons, which may have hit the target several times, because with conventional image processing, they tend to cloud the image. One of the unique advantages of the UF-built machine is that it draws useful images from these multiple-collision photons, he said.

"There’s a lot of good information in multiple-collision photons, but learning how to use it was not trivial," Dugan said. Twin detectors pick up photons from both single- and multiple-collision photons, with a computer merging the two using complicated computer-processing algorithms. In U.S. Army-sponsored tests, the technology proved adept at locating landmines, but the images were equally striking because they showed tiny empty spaces in the mines themselves.

"The photons would zip across the voids and bounce back," Dugan said. "It allowed us to tell mines from tree stumps and stones, because we had high intensity areas where the voids were."

Jacobs and Dugan realized this capability made the detectors ideal for identifying flaws and defects in materials such as the carbon fiber used in airplanes without having to rip the material itself apart. The first tests of the concept, done on airplane frame members and small components, proved promising. After the Columbia disaster, word of the positive results led to an inquiry from Lockheed Martin.

For preliminary testing purposes, the aerospace giant provided the UF researchers with sample chunks of fuel-tank foam containing known flaws as well as samples with unknown flaws. Some of the foam pieces were melded to the aluminum skin of the fuel tanks, while others consisted solely of foam. The UF detectors identified all significant flaws both within the foam and lying between the foam and the fuel tank skin.

"The flaws we found ranged from a quarter inch to 2 inches, and they were both de-laminations and voids," Dugan said.

The defense contractor then purchased four of the roughly $100,000 scanners, while NASA bought one.

Ussery said Lockheed has used the detectors, in tandem with a private company’s scanning technology called tetrahertz imaging, to scrutinize the foam on a roughly 100-square-foot section of Discovery’s external fuel tank as well as a back-up tank.

That’s a tiny swath of the overall tank, which is 154 feet long, 27.6 feet around and has a total area of 12,620 feet -- so large it has to be transported from New Orleans to Kennedy Space Center by ocean-going barge. However, the section, located on a ramp that protects instrumentation during flight, is covered with relatively thick foam applied by workers rather than machines. With parts as thick as 7 inches, versus 1 or 2 inches elsewhere, that raises the risk of an air bubble void.

The foam chunk that broke off Columbia was also hand-applied. But in the new tank, the area where the mishap occurred -- a bipod fitting that connected the tank to the orbiter -- is no longer covered with foam. Instead, heaters do the job the foam once performed.

Ussery said Lockheed engineers scan about 1 square foot per hour using the backscatter X-ray machine. The machine can work about at about twice that speed, but the image resolution and ability to detect small gaps declines at high speeds, Dugan said. Lockheed engineers used the machine to seek out flaws near the surface of the foam, while they employed the tetrahertz imaging machines to probe deeper. Neither machine found any flaws big enough to warrant removing the foam, Ussery said.

Ed Dugan | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>