Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Lab Delves into Plants for Fuels

03.03.2005


A new integrated facility designed to give scientists unprecedented insights into the chemical and biological reactions which can transform renewable plant and waste materials into useful sources of energy was dedicated yesterday at the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL).



Called the Biomass Surface Characterization Laboratory (BSCL), the $2.85 million facility features an array of electron and optical microscopes, and other advanced research tools, to probe biomass-to-energy processes at the most basic atomic and molecular levels. "This unique laboratory will further enhance the capabilities of our world-class biomass research team," said Michael Pacheco, director of the National Bioenergy Center, located at NREL. "It is our fervent hope that by assembling the best research equipment available within this new facility, we will hasten the day when our abundant biomass resources can be harnessed to cleanly and economically meet the nation’s critical energy needs."

The new laboratory will support development of new technologies for bio-refineries—which will produce transportation fuels and a range of other products, much as a conventional oil refinery does today. Bio-refineries are to use renewable plant and waste materials instead of petroleum.


Officials from DOE’s Office of Biomass Programs and NREL participated in a dedication event for the new laboratory, which is housed within the Field Test Laboratory Building on NREL’s South Table Mountain campus. "The leading edge tools, the advanced research and the skills and techniques that will be developed in this laboratory will allow technology developers to take biomass conversion technologies to the next level," said Douglas Kaempf, manager of DOE’s Office of Biomass Programs. "The investment required to develop this facility is testament to DOE’s commitment to integrating renewable energy into our nation’s energy infrastructure," Kaempf said.

The highly sensitive instruments employed in the new laboratory must operate in a stringently controlled environment, and the BSCL includes systems to monitor and maintain temperature, humidity, acoustical vibration and cleanliness to the most exacting standards. Similarly, researchers using the lab will have at their disposal the latest computer hardware and software systems to capture, record and analyze the data they obtain.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by Midwest Research Institute and Battelle.

For further information contact NREL Public Affairs at (303) 275-4090.

Gary R. Schmitz | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>