Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teams build robots that walk like humans

18.02.2005


’Toddler’ to be demonstrated at AAAS meeting Feb. 17


The MIT learning biped. This robot uses a reinforcement learning algorithm to learn to walk in less than 20 minutes, or about 600 steps.


Dr. Russ Tedrake, far right, watches proudly as his "Robo-Toddler" walks and passersby watch at the Whittaker building at MIT. photo: Donna Coveney/MIT



Three independent research teams, including one from MIT, have built walking robots that mimic humans in terms of their gait, energy-efficiency, and control. The MIT robot also demonstrates a new learning system that allows the robot to continually adapt to the terrain as it walks. The work, to be described in the Feb. 18 issue of the journal Science, could change the way humanoid robots are designed and controlled and has potential applications for robotic prostheses. It could also aid scientists’ understanding of the human motor system.

Developed at MIT, Cornell, and Holland’s Delft University of Technology, the three robots are all based on the same principle: they are an extension of several years of research into "passive-dynamic walkers" that walk down a shallow slope without any motors. Passive-dynamic walkers were inspired by walking toys that have been around since the 1800s.


Toddler

Control programs in the Cornell and Delft robots are extremely simple, because a large portion of the control problem is solved in the mechanical design. The MIT robot uses a learning program that exploits this design, allowing the robot to teach itself to walk in less than 20 minutes, or about 600 steps.

Dubbed "Toddler" because it learns to walk and because it toddles when it does so, the robot "is one of the first walking robots to use a learning program, and it is the first to learn to walk without any prior information built into the controller," said Russ Tedrake, a postdoctoral associate in the Department of Brain and Cognitive Sciences.

Among other things, the learning program allows the robot to navigate efficiently over a variety of walking surfaces, and may eventually allow robots to navigate very rough terrain. That’s because the program works so quickly that Toddler is able to continuously adapt to the terrain as it walks.

Tedrake will demonstrate Toddler at a press briefing Feb. 17 at the annual meeting of the American Association for the Advancement of Science in Washington, DC. His coauthors of the Science paper are Professor Andy Ruina of Cornell, Steven Collins of the University of Michigan, and Martijn Wisse of Delft.

Tedrake’s MIT advisor on the work is Professor Sebastian Seung of the Department of Brain and Cognitive Sciences. The project involved a number of MIT students that participated through the Undergraduate Research Opportunities Program, including Ming-fai Fong, Derrick Tan, and Andrew Baines. The version of the robot featured in Science was designed and built by Tedrake and Teresa Weirui Zhang, an alumni of the MIT mechanical engineering department.

Energy-Efficient

The three robots are quite energy-efficient. Cornell’s "seems to be at least 10 times more efficient than anybody else’s," said Ruina. Rough calculations suggest that it approaches human efficiency, consuming an amount of energy per unit weight and distance comparable to a human walker. The MIT and Delft robots, though not built deliberately to be energy-efficient, still use much less energy than, say, their famous cousin, Honda’s Asimo.

How do they move? The Cornell robot supplies power to the ankles to push off. When the forward foot hits the ground, a simple microchip controller tells the rear foot to push off. During the forward swing of each leg, a small motor stretches a spring, which is finally released to provide the push. The Delft robot uses a pneumatic push at the hip, and the MIT robot uses electric motors that directly move the ankle. All three robots have arms synchronized to swing with the opposite leg for balance.

The robot work was done primarily to study the biomechanics and control of human locomotion, but it could have applications in practical robotics. Collins, for example, is applying some of what he’s learned to the design of a powered prosthetic foot for amputees. This work was supported in part by the National Science Foundation and the MIT Center for Bits and Atoms.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>