Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor of plastic can be produced in a printing press

08.02.2005


Electrochemical transistors made of plastic open myriad possibilities. Since both electrons and ions are active, they can function as a bridge between traditional electronics and biological systems. A new dissertation from Linköping University in Sweden describes a simple and inexpensive humidity sensor that can be manufactured in a printing press.



Electrically conducting plastic is used today in field effect transistors, light-emitting diodes, electrochemical components, and batteries. Organic semiconductors are better than silicon because they can be applied to soft surfaces, even paper, using printing technology. What’s more, the components can be recycled in the same way as regular paper and plastic.

In an electrochemical transistor, both electrons and ions serve as charge bearers. It can be used in sensors, analytical tools, logical circuits, and smart displays. The current is controlled by a reduction/oxidation process, which means that it uses low-voltage current, roughly one volt, and is not dependent on small dimensions. Moreover, it has a memory function.


This dissertation by David Nilsson, from the Department of Science and Technology, describes an electrochemical humidity sensor, produced using purely organic materials. Depending on the humidity of the air, the conducting capacity of the electrolyte changes, as does the response from the transistor. The same concept can be used to gauge acidity (pH) or the content of ions and glucose.

The vision is for the sensor, the battery, and the display to be pressed simultaneously on paper or other flexible surfaces. In that way it would be possible to produce cheap electronic “litmus paper” or reaction strips for blood and glucose testing.

Intelligent image units (pixels) are another interesting application of electrochemical transistors. Varying the current alters the color of the display and thereby the content of the image or text. The technology can be used to develop smart labels and advertising signs.

David Nilsson is a member of Professor Magnus Berggren’s research team in organic electronics. In collaboration with the electronics research institute Acreo, the team has developed printing technology for electronics on paper. Recently the Swedish Research Council provided funding for another printing press under the project Electronic Paper Printing House.

Åke Hjelm | alfa
Further information:
http://www.liu.se
http://www.bibl.liu.se/liupubl/disp/disp2005/tek921s.pdf>

More articles from Power and Electrical Engineering:

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

nachricht A water-based, rechargeable battery
09.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>