Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NETL and Carnegie Mellon team up to create new paradigms for hydrogen production

28.01.2005


NETL and Carnegie Mellon develop new computational modeling tool

The Department of Energy’s National Energy Technology Laboratory (NETL) and Carnegie Mellon University have developed a new computational modeling tool that could make the production of hydrogen cheaper as the United States seeks to expand its portfolio of alternative energy supplies.

The research, supported by the DOE’s Office of Fossil Energy and reported in the current issue of the prestigious journal "Science" published by the American Association for the Advancement of Science, predicts hydrogen flux through metal alloy separation membranes that could be used to produce pure hydrogen.



"This research demonstrates our vision of coupling computational and experimental methods to facilitate rapid research and development of advanced technologies," said Anthony Cugini, focus area leader of Computational and Basic Sciences at NETL. "In essence, we are developing the computational tools to prescreen hydrogen separation membranes." These membranes allow pure hydrogen to pass through, while blocking impurities that are present with other gases in the production of hydrogen from fossil energy resources. Separation is a critical component of hydrogen production. Impurities lessen the effective use of hydrogen. Membranes have the ability to remove virtually all of the impurities from the hydrogen stream.

The use of advanced computing to determine the ability of candidate membranes to produce pure hydrogen would be a time- and money-saving step for hydrogen researchers. Instead of having to produce a large suite of alloys with various proportions of metals--such as palladium and copper--and then test them to determine optimum compositions for maximum hydrogen purification, they could predict in advance which compositions would have the desirable properties.

The research team at NETL in collaboration with Carnegie Mellon is investigating a new hydrogen membrane material--a copper palladium alloy--that allows hydrogen to be processed without contamination by other gases such as hydrogen sulfide during the purification process.

"We coupled computational modeling with experimental activity to develop a predictive model for hydrogen flux through copper palladium alloys," said David Sholl, associate professor in chemical engineering at Carnegie Mellon. "We now have a solid method in the screening of other complex alloys for the future production of hydrogen," he said.

"Ultimately, we see our new computational tools helping to take us into the new hydrogen economy as we scramble to harness this clean fuel, increasingly driven by our long-term worries about oil supplies as well as environmental challenges," Sholl said.

"Efficient techniques for large-scale purification of hydrogen are of world-wide interest as we work toward a hydrogen-based economy," said John Winslow, technology manager for Coal Fuels and Hydrogen at NETL. "If high flux membranes that resist chemical contamination can be developed, the impact of these devices on industrial hydrogen purification would be dramatic."

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>