Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen storage can be improved

27.01.2005


The storage of hydrogen in fuel cell powered cars can probably be greatly improved by increasing the working temperature of the fuel cell. With the use of magnesium powder, the storage of hydrogen can take place more efficiently and safely and at a higher temperature. This is the conclusion of Gijs Schimmel, who will defend his PhD thesis at TU Delft on 1 February.



One of the main problems in the transition to a hydrogen economy is the storage of hydrogen, for use in vehicles, for example. Currently, this is done by storing the gas at high pressures or very low temperatures. Delft researcher, Gijs Schimmel, finds the high pressure option suitable for use in busses, “After all, on a bus there is space for a few high pressure cylinders. In cars this is not the case. Also, with such a tank, you are dealing with pressures of up to 350 bars, while in the case of LPG tanks, the pressure is restricted to 10 bars for safety reasons.’

During his research at the Delft Institute for Sustainable Energy, Schimmel therefore studied the possibilities of the storage of hydrogen in powdered magnesium. Hydrogen storage in this kind of metal hydrides has been researched for a long time, but according to Schimmel, the problem remains that too much energy and too high a temperature is needed to extract the hydrogen from the compound, which negatively effects the efficiency of the process. Schimmel points out that an adjustment in the fuel cell itself may provide a solution. If the fuel cell were to work at a higher temperature than normal (between 200 and 300 °C in stead of 80 °C for most current fuel cells), then the ‘excess heat’ from the fuel cell could be used to efficiently extract hydrogen from the storage tank.


In this way, the storage of hydrogen using magnesium powder could be a very interesting option. An additional advantage of a higher working temperature is that less deterioration of the catalysts takes place. The latter is also the reason that there is a great demand for new types of fuel cells. Schimmel is optimistic, “But like with many other developments involving hydrogen, it always remains to be seen whether the high expectations are met. If this idea works, a method and an infrastructure would also have to be developed to be able to ‘fill up’ on magnesium hydride.”

TU Delft scientists are also looking at completely different ways of storing hydrogen. One of these methods involves so-called gas hydrates, a kind of ice that can trap hydrogen. Recently Delft researchers showed that this can take place under relatively low pressures (less than 10 bars). Another related method is the possibility of storing hydrogen in carbon nano-tubes. However, in his research, Schimmel concluded that this method was probably not feasible.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>