Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen storage can be improved

27.01.2005


The storage of hydrogen in fuel cell powered cars can probably be greatly improved by increasing the working temperature of the fuel cell. With the use of magnesium powder, the storage of hydrogen can take place more efficiently and safely and at a higher temperature. This is the conclusion of Gijs Schimmel, who will defend his PhD thesis at TU Delft on 1 February.



One of the main problems in the transition to a hydrogen economy is the storage of hydrogen, for use in vehicles, for example. Currently, this is done by storing the gas at high pressures or very low temperatures. Delft researcher, Gijs Schimmel, finds the high pressure option suitable for use in busses, “After all, on a bus there is space for a few high pressure cylinders. In cars this is not the case. Also, with such a tank, you are dealing with pressures of up to 350 bars, while in the case of LPG tanks, the pressure is restricted to 10 bars for safety reasons.’

During his research at the Delft Institute for Sustainable Energy, Schimmel therefore studied the possibilities of the storage of hydrogen in powdered magnesium. Hydrogen storage in this kind of metal hydrides has been researched for a long time, but according to Schimmel, the problem remains that too much energy and too high a temperature is needed to extract the hydrogen from the compound, which negatively effects the efficiency of the process. Schimmel points out that an adjustment in the fuel cell itself may provide a solution. If the fuel cell were to work at a higher temperature than normal (between 200 and 300 °C in stead of 80 °C for most current fuel cells), then the ‘excess heat’ from the fuel cell could be used to efficiently extract hydrogen from the storage tank.


In this way, the storage of hydrogen using magnesium powder could be a very interesting option. An additional advantage of a higher working temperature is that less deterioration of the catalysts takes place. The latter is also the reason that there is a great demand for new types of fuel cells. Schimmel is optimistic, “But like with many other developments involving hydrogen, it always remains to be seen whether the high expectations are met. If this idea works, a method and an infrastructure would also have to be developed to be able to ‘fill up’ on magnesium hydride.”

TU Delft scientists are also looking at completely different ways of storing hydrogen. One of these methods involves so-called gas hydrates, a kind of ice that can trap hydrogen. Recently Delft researchers showed that this can take place under relatively low pressures (less than 10 bars). Another related method is the possibility of storing hydrogen in carbon nano-tubes. However, in his research, Schimmel concluded that this method was probably not feasible.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>