Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Optical innovator uses soda-straw-like tubes to solve widespread sensing problems


Car battery failing? Hazardous material leaching? Oil level dropping?

There you are, tapping your fingers on the cold steering wheel as your windows cloud over from your breath. How could you have known your car battery was that low? Sending weak beams of light through inexpensive glass tubes that resemble soda straws, Sandia National Laboratories researcher Jonathan Weiss - dubbed by some the "light wizard" - can inexpensively solve problems ranging from the migration of waste through a landfill to detecting when an automobile battery soon will be too weak to start a car.

Similar sensors also could tell oil field operators when to stop pumping oil from their tanks before the pumps pick up water that accompanies oil from the ground.

The oil/water interface sensor is the subject of a pending Sandia patent application and a research agreement with Custom Electronics, an electronics company in upstate New York. The company is partnering with Sandia, a National Nuclear Security Administration (NNSA) lab, to develop a prototype device from the current bench-top demonstration.

The car battery solution awaits a visionary entrepreneur to put this cheap, safe, patented solution in the hands of the public. And in an invited talk at a recent American Soil Society meeting on Nov. 3 in Seattle, Weiss presented his patented device for detecting hazardous waste movement.

Avoiding the unexpectedly dead battery problem A turkey-baster-like device inserted into a popped-open port has been the traditional way for a driver to test the amount of acid in a car battery (and possibly splash sulfuric acid on his or her fingertips). Weiss’s simple invention requires no direct human intervention under the hood.

His procedure: factory-inject sulfuric acid or even, possibly, sugared water into a clear glass tube smaller than a soda straw and immerse the tube in the battery’s acid. Glass is inert in acid and should have ample longevity, he says.

Next, send light through the tube and measure the amount that returns. (The light is generated by hardy, inexpensive diodes [LEDs] already mass-produced for traffic signals, house night lights, bike tail lights, and instrument control panels.)

The amount of light that stays in the tube depends on the refractive index of the surrounding solution. If the refractive indices are identical, light would just as soon escape from the sides of the tube as stay within it. That is the case when the tube is filled with sulfuric acid at maximum charge. The refractive index is at first the same as that of the battery acid surrounding it (1.38). But over time, the battery’s acid weakens and becomes more like water (1.33). Its lessening refractive index attracts less light from the tube. The exchange rate, in a manner of speaking, is worsening, and light remaining in the tube (as reflected by a tiny piece of metal placed at the tube’s far end) increases.

A simple solid-state light detector - a photodiode - at the tube’s near end registers more light, therefore, as the battery deteriorates. The detector could easily be wired to activate a dashboard alarm light similar to ones that notify a driver that a seat belt is unclasped.

Sugar water inserted in glass tubing also works well, Weiss says, because the refractive index of water can be adjusted upward by dissolving sugar in it. "Quite a substantial change can be produced, far exceeding that needed for this application," he says.

While the glass of the tubing does have an effect on light leakage, says Weiss, "the liquid core and liquid cladding are dominant." The tube is a millimeter in diameter, two to three inches long, and inexpensive: 200 tubes set Weiss back $10 for his experiments. Mass production would drive costs down even lower.

Measuring battery deterioration will become increasingly important as more hybrid electric/gas vehicles, with their high reliance on batteries, take to the highways, he says. Another possible use for the device is for cheap, continual monitoring of battery banks maintained by local phone companies. The batteries are used for back-up power to keep home phones working when wall-current electricity fails due to an outage.

Using light to find the level of oil and water in a tank Imagine you’re in the oil business and you’ve pumped oil and water (just the way it increasingly comes out of the ground) into a holding tank. You want to retrieve only the oil floating atop the water so you can transport the least possible weight from the oil field to a refinery. How do you know - accurately, safely, and simply - when to stop pumping?

This widespread problem is often solved currently by the most primitive means: An employee opens a hatch and drops a stick into the liquid, possibly inhaling its fumes as pumping is in progress.

With trivial hook-ups and a bit of engineering logic, Weiss shows - at least in laboratory demonstrations - that the answer to this problem can be quickly determined.

Weiss’s recipe: Take two five-foot-long optical fibers made of plastic. Mount them vertically in a tank that holds water with oil on top. Send light down one fiber, and then detect light carried back up by the second fiber. The strength of the detector’s signal depends on the height of the oil/water interface. If the tank is all water, the signal is very strong, and the pumping machine is instructed to stop pumping fluid; there is no oil left. "The device is immune to electromagnetic interference and will not create sparks in a potentially explosive environment," says Weiss.

The possibility of sludge building up on the device, muting the light, as the large tanks are filled and depleted is a potential reliability problem that might be overcome by "potting" the fibers in a clear plastic that repels hydrocarbons, says Weiss.

The transfer of this technology to a private company is the maiden effort of Sandia’s new Mission Centric Venturing program, intended to expedite interactions with industry. The program offers Sandia researchers the alternative of marketing their ideas commercially while remaining at Sandia.

Detection device for landfill When people are interested in the behavior of a landfill that holds chemicals that may undesirably leach into groundwater, the problem naturally comes up: How can an observer tell what the chemicals in a landfill are doing?

For leaching to occur, liquid must be present.

Weiss’s solution: Arrange two fiber optic cables like snakes, one above the other, in the landfill. Shine a light through the fibers. Because the temperatures of the fibers change the amount of light scattered by them, the emissions can be used to indicate the temperature at any point along the fiber. That temperature is determined in part by how much water is in the surrounding soil. Thus, fluid flowing down through the landfill would produce a clear signal from the wetted, cooled fiber.

Weiss’s innovative fiber optic sensors have received 12 patents in the last ten years - five of them with Sandia and the others with the U.S. Department of Energy.

Neal Singer | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>



Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

More VideoLinks >>>